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Abstract. The classical receptive fields of V1 neurons contain only lo-
cal visual input features. The visual system must group separate local
elements into meaningful global features to infer the visual objects in
the scene. Local features can group into regions, as in texture segmen-
tation; or into contours which may represent boundaries of underlying
objects. I propose that the primary visual cortex (V1) contributes to
both kinds of groupings with a single mechanism of cortical interac-
tions/dynamics mediated by the horizontal connections, and that the
dynamics enhance the saliencies of those features in the contours (com-
pared with those in a noisy background) or near the region boundaries
(compared with those away from the boundaries). Visual inputs spec-
ify the initial neural activity levels, and cortical dynamics modify the
neural activities to achieve desired computations. Contours are thereby
enhanced through dynamically integrating the mutual facilitation be-
tween contour segments, while region boundaries are manifested (and
enhanced) in the dynamics because of the breakdown of translation in-
variance in image characteristics at the region boundaries. I will show
analytically and empirically how global phenomena emerge from local
features and finite range interactions, how saliency enhancement relates
to the contour length and curvature, and how the neural interaction can
be computationally designed for region segmentation and figure-ground
segregation. The structure and behavior of the model are consistent with
experimental observations.

1 Introduction

Visual inputs are first sampled as pixels. Subsequently, the images are processed
by local transforms, such as the receptive fields in the primary visual cortex, to
give local image features such as edge segments or bars. However, these local
features are too small to represent global visual objects. The visual system must
group local features into global and more meaningful ones for visual recognition
and visual-motor tasks. One is to group local edge segments into global contours,
and the other is to group local features into regions, as in texture segmentation.
Global contours sometimes mark boundaries of regions. Other times, regions
such as those defined by textures do not have definite or visible markings for
boundaries, which we humans can nevertheless locate easily. In any case, a region
and its boundary are complementary to each other. Knowing one can infer the
other. It is desirable to have a single computational mechanism for detection or
grouping of both contours and regions.
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Both contour and region groupings are very important for visual segmen-
tation, which is still a formidable problem in computer vision after more than
two decades of research efforts (Kasturi and Jain 1991). The problem with con-
tour grouping is that there are many candidate edge segments after the edge
detection operation on an image, many of them are simply “noisey” contrast
elements not belonging to any meaningful contour. The grouping algorithm has
to discriminate between “signals” and “noises” using contextual information.
Many computer vision algorithms on edge linking need user intervention, though
more autonomous algorithms exist and they work under certain conditions (e.g.,
Shashua and Ullman 1988, see more references in Li 1997). For region grouping,
all existing approaches require image feature extraction and/or region classifi-
cation as a preprocessing stage to compute feature values or classification flags
for every small area in an image. The regions are differentiated by these feature
values to locate the boundaries (Haralick and Shapiro 1992). Such approaches
have problems near the boundaries where features are indefinite. Furthermore,
they can not segment two regions in Fig. 1 where the two regions would have the
same feature or classification values. Segmentation outcomes from edge and re-
gion based approaches usually do not agree with each other, even though the two
kinds of algorithms have been combined for better visual segmentation perfor-
mance (Kasturi and Jain 1991). There is so far no single algorithm or mechanism
that deals with both contour and region groupings.
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Fig. 1. The feature values in the two regions are the same. However one easily sees the
boundary between two regions. Traditional approaches to segmentation using feature
extraction and comparison will not be able to segment the regions in this example.

Here I propose that the first step towards contour and region grouping is to
enhance the saliencies of image elements on contours or near region boundaries
against non-contour elements or elements away from the boundaries. In addition,
I propose that a single mechanism, using the cortical interactions in the primary
visual cortex, suffices for both kinds of saliency enhancement. This operation
serves the most difficult task in contour and region grouping — to discriminate
between contour and non-contour elements, or to locate the boundary elements.
By using a same language — saliency — to distinguish both contours and region
boundaries from background, it is feasible to have a single algorithm for both
grouping purposes.



One may find it easier to accept saliency enhancement for contour elements
than that for elements near region boundaries. In fact, it is only natural to
enhance or mark the region boundaries for segmentation. This is because seg-
mentation necessarily means boundary localization. A mere classification flag
at every image area is sometimes not useful or necessary, as indicated by the
counter example in Fig. (1), and at other times require an additional step to
differentiate the classification values in order to segment.

A model of V1 is constructed to implement the proposal. The contextual
influences beyond the classical receptive fields modify the neural activity levels
initialized by external inputs to achieve desired visual computation. It will be
shown analytically and empirically that contours are thereby enhanced through
dynamical integration of the contextual facilitation along the contour, and that
the enhancement increases with contour length and smoothness. On the other
hand, region boundaries are manifested (and enhanced) in the dynamics (medi-
ated by the translation invariant cortical neural connections) by the breakdown
of translation invariance in image characteristics. Since translation symmtry
breaking can be detected without feature classifications, our approach performs
region segmentation without region classification. While boundary resions are
problematic for traditional segmentation-by-classification approaches, they are
high-lights in the present approach. The structure and behavior of the model
are consistent with the experimental observations (Kapadia, Ito, Gilbert, and
Westheimer 1995, Gallant, van Essen, Nothdruft 1994).

2 A V1 model of contour enhancement and region
boundary enhancement

2.1 Model elements and structure

The selective saliency enhancing network is a model of V1. It consists of K
neuron pairs at each spatial location ¢ modeling a hypercolumn in V1 (Fig. 2).
Each neuron has a receptive field center i and an optimal orientation § = kn/K
for k = 1,2,...K. A neuron pair consists of a connected excitatory neuron and
inhibitory neuron which are denoted by indice (¢6) for their receptive field cen-
ter and preferred orientation, and are referred to as an edge segment. An edge
segment receives the visual input via the excitatory cell, whose output quantifies
the saliency of the edge segment and projects to higher visual centers. The in-
hibitory cells are treated as interneurons. Such a local cortical circuit is modeled
after the experimental observations (White 1989, Douglas and Martin 1990).
Some edge elements excite each other via finite range excitatory-to-excitatory
connections Jjg, jor, while others inhibit each other via finite range disynaptic
inhibition W;g jo which are excitatory-to-inhibitory connections. The system
dynamics follow the equations of motion
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Fig. 2. A: Visual inputs are sampled in a discrete grid space by edge detectors modeling
cells in V1. B: Edges interact with each other via monosynaptic excitation J (to thin
solid edges) and disynaptic inhibition W (to dashed edges) within a finite distance
(see also C). This is a coarse illustration of the neural connection pattern from the
center (thick solid) edge to other edges in the neighborhood. All edges have the same
connection pattern, suitably translated and rotated from this one. C: An edge segment
is processed by an inter-connected pair of excitatory and inhibitory cells. The excitatory
cells receive visual inputs and send outputs to higher centers.
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where z and y are membrane potentials of the excitatory and inhibitory cells,
9:(x) and gy(y) are cell output firing rates, 1/a, and 1/a, are the membrane
time constants, I;g is the visual input, I, and I, are background or internally gen-



erated inputs, J, is the self excitation connection, and 1 (A#) models the mutual
inhibition spread within a hypercolumn. More details of the model parameters
and structures can be found in (Li 1997).

The visual input pattern is I;p, which is transformed by the neural interac-
tions and dynamics to give an output pattern g,(z;s), the cell output activities
from the excitatory cells. Usually g,(x;9) & L. The relationship between the
input I and output g, patterns is determined by the network structure, in par-
ticular the neural connections J and W that mediate the contextual influences
and induce the cortical dynamics. Therefore, J and W should be designed such
that the network selectively enhances the saliencies g,(x;9) for image elements
(10) within contours or near region boundaries.

2.2 Computational design of the cortical interactions for contextual
influences

The neural connection structure is designed to satisfy the following conditions.

1. The connection strengths decreases with increasing distance between the
edge segments, and becomes zero for large distances.

2. The connection structure has translation, rotation, and reflection invariance.
This means the following. Let i — j be the line connecting the centers of two
edges (16) and (j6"), which form angles 6; and 6, with this connecting line.
The connections Jg ;o and Wiy jor depend only on |i — j|, 61, and 62, and
satisfy Jm,jg/ = Jjg/yig and Wia,jgl = ngl,z'g.

3. The connections should be such that the network gives stable and com-
putationally desirable behavior: The network amplification (caused mainly
by excitatory connections J) should be enough to give significant saliency
enhancement to selected image elements, but not too much such as to uns-
electively give high saliencies to all elements in the image grid.

4. The mutual facilitation Jig jor between two edges i and jé' is large if one
can find a smooth or small curvature contour to connect (i6) and (j6'), and
generally decreases with increasing curvature of the contour.

5. The mutual inhibition Wjg jo between two edges i6 and j@' is strong when
they are alternative choices in the route of a smooth contour, i.e., when they
are close, have similar orientations, and displaced roughly in a direction
perpendicular to their orientations.

6. The connection should be such that a translation invariant input pattern
I (e.g., when Iy does not depend on ¢) will lead to a translation invariant
output pattern g,. This means, the system should not have spontaneous
translation symmetry breaking (spontaneous pattern formation).

7. The balance between excitation J and inhibition W should be such that un-
der a translation invariant input I, each visible element 76 receives an overall
inhibition (at least under not too low an input strength) after combining the
contextual influences from all the neighboring elements.

Condition (1) requires local interaction for global grouping behavior. Fero-
magnetism is another example in nature of global behavior with local interac-



tions. Condition (2) ensures view point independence of the desired computa-
tion. In addition, the translation symmetry in interaction is required to detect
the translation symmetry breaking at the boundary between two image regions.
Condition (3) ensures that the model output is under the input control in a
computationally desirable way. For instance, when the input contains a contour
of finite length among a noisy background, the network should not extend the
contour to infinite length, nor should it leave the contour unenhanced against
the noisy background. Conditions (4) and (5) are for the contour enhancement,
relative to the background. Note that these two conditions imply that two edges
of similar orientations are more likely to interact with each other (see Fig. (2),
whether it is mutual excitation or inhibition. Condition (6) ensures that the
system does not find any region boundaries when it should not. Spontaneous
pattern formation under translation invariant interactions are not uncommon
in nature. Zebra stripe formation is one such example. Hence the model inter-
action should be within the subset of all translation invariant interactions that
avoids spontaneous pattern formation. Condition (7) ensures that when trans-
lation symmetry is broken by an input image, the region boundary area has
higher, rather than lower, saliency values than areas away from the boundaries.
This is because by conditions (4) and (5), similar image elements interact with
each other more strongly than non-similar elements. The image elements near
region boundaries are surrounded by fewer similar neighbors, and consequently
receive less overall inhibition. In the example of a region composed of many par-
allel lines, combining conditions (4), (5) and (7) leads to the following: a line
segment in the middle of the region receives less contour enhancement excitation
than the overall iso-orientation suppression from its flanking neighbors in nearby
parallel lines.

2.3 Contour integration

In addition to the external visual input I;p, an edge element 76 within a contour
also receives excitation AT = 370 o ior2ip Ji0,56' 9z (T jor) from other contour
elements j6'. To analyse contour enhancement, consider for simplicity an edge
segment in a long enough curve whose curvature is changing slowly enough,
and assume that there is no inhibition between contour elements. Then it can
be shown (Li, 1997) that the response ratio between a curve segment and an
isolated segment is (ggl/(:‘j) +1- Jo)/(ggl,(?j) +1—-J,— Zjoleconmur,jw;ﬁio Jig,j6")
where 7 is the average response of the inhibitory interneurons and g’ is the
derivative of g. Therefore, the degree of contour enhancement increases with
20" Ceontour, 0" £i0 Ji6,j6' » the integration of mutual excitation connection within
a contour. Since such an integration is computationally designed to increase with
contour smoothness and length, one can then relate the degree of enhancement
with these contour characteristics (see Li 1997 for more examples and detailed
analysis). In the computational design for J;g_je, the scale of J should be chosen
such that the integration of facilitation J;p jor along a contour is enough for
significant saliency enhancement within a contour, even to fill in the gaps in a



contour, but not enough to excite segments beyond the ends of a contour. Fig.
(3) demonstrates the performance of contour enhancement against noise.

Output after removing edges
Model visual input Model Output of activities lower than 0.63
of the most active edge

Fig. 3. Contour enhancement and noise reduction. The input and output edge strengths
are denoted proportionately by the thicknesses of the edges. The same format applies
to other figures in this paper. The model outputs are the temporal averages of g.(z).
All visible edges have the same strength in the input, and are differentially enhanced
or suppressed at the output. On average, the line and circle segments are roughly 2.5
times as salient as the “noise” segments. For demonstration, we display the outputs
after thresholding out the weaker edges (right). Note that the apparent gaps between
the circle segments are caused by the lack of sampling points there in the particular
sampling grid arrangement. No gaps actually exist and hence no filling-in is needed.

2.4 Region boundary enhancement

In order to have well controlled region boundary enhancement, the synaptic con-
nections J and W are examined to see whether conditions (6) and (7) in section
2.2 are satisfied. We check this for translation invariant inputs I;p = I for all i
and any given 6, and Ly = 0 for §' # 6. Find the mean field solution Z and §
by setting to zero the right hand sides of the equations (1) and (2), and setting
Tig = T, ;¢ = 0 for 8 # 0, y;p = y. Condition (6) is satisfied if this mean
field solution is stable, or if it is unstable, whether the dominant mode in the
deviation from the mean field solution is also translation invariant. Stability and
dominant mode analysis are studied by a perturbation analysis around the mean
field solution, using the linear expansion or small amplitude approximation. Con-
dition (7) is satisfied for that input if }°.; Jigjo < D2, Wie,j09,(9)1(0) for
a reasonable range of . This inequality is derived by noting that edges excite
each other directly by mono-synaptic, excitatory-to-excitatory connections J,
and inhibit each other indirectly by disynaptic, excitatory-to-inhibitory connec-
tions W. Conditions (6) and (7) are further confirmed by simulations. After the
conditions (6) and (7) are met for all choices of 8 for those translation invariant
input images, we hope, and check by some simulation examples, that the same
conditions are also met for arbitrary translation invariant images.
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Fig.4. A: An example of region boundary enhancement. Note that the output ac-
tivities g(zi9) are higher near the boundaries even though each visible edge has the
same input strength. B: Six additional examples (a, b, ¢, d, e and f) of model input
images, each followed by the corresponding output high lights immediately below it.
Note that both humans and the network find it difficult to segment two regions in the
example c. Traditional segmentation techniques can not segment f (cf. Fig. (1)).

Fig. (4) shows the model performance for some examples on region boundary
enhancement. Note that the plots in Fig. (4) and later figures include only small
portions of the input and output images in the model for illustration purpose. So
the boundaries of the plots should not be taken as the boundaries of the texture
regions (and hence they are not high-lighted at the model outputs). This model
can also enhance boundaries for regions defined by stochastic image elements
(Fig. (5)). The pop-out phenomena can also be accounted for — when a region
is very small, all parts of the region belong to the boundary. The small region is



thus enhanced as a whole and pops out from the background (Fig. (5¢).
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Fig. 5. Examples of segmentation of stochastic texture regions a and b, and popout c.
Visual inputs are at the top row, followed by the respective output high-lights below.

The principle and mechanism of region boundary enhancement can be intu-
itively understood by the following analogy with physical systems. One may take
an edge element as an atom, a composite pattern primitive such as a “+” in Fig.
(5a) as a molecule, interactions between edges or composite pattern primitives
as interactions between atoms and molecules, regular texture regions as lattice
structured materials, and stochastic regions as non-lattice liquids such as glass.
Usually, two blocks of different materials somehow joined together are likely
to break near their junctions, because molecular interactions are not translation
invariant near the junctions and they are manifested by stronger molecular vibra-
tions there. Analogously, neural activities near the region boundaries are likely
to be the high lights, relatively enhanced by the underlying neural interactions.

3 Summary and Discussion

This paper proposes that groupings of local visual features into global contours
and regions can be carried out in the first stage by local, finite range, neural
interactions to enhance the saliencies of image elements within contour or near
the region boundaries. This proposal is implemented in a model of V1 com-
posed of edge/bar detectors and horizontal connections mediating contextual
influences. The structure of the horizontal connections is computationally de-
signed for the requirement of contour and region boundary enhancement. The
model is studied analytically and empirically to understand that contours are en-
hanced by integrating the mutual facilitation between contour segments, while
region boundaries are detected by the breakdown of translation invariance in
the image characteristics near the boundaries. The performance of the model is
demonstrated by examples.
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The main contributions of this work are the following. First, it is the first of
the kind to deal with both contour and region groupings with a single mecha-
nism. Regions and their boundary contours are complementary to each other. It
is computationally desirable to handle both groupings by a single mechanism.
Second, this work introduces an entirely new approach to region segmentation —
region segmentation without region classification. It avoids some problems and
the ad hoc flavor in the traditional approach to region segmentation of the last
two decades, and is computationally simpler. Third, compared to many other
models (see references in Li 1997), this model achieves contour enhancement
using only known V1 neural elements and interactions without requiring higher
visual centers or biologically non-plausible operations. (It has been difficult to
model contour enhancement using only V1 elements largely because of the dy-
namic stability problems in a recurrent neural network.) It thus answers the
question of whether the difficult problem of global contour integration could be
first attempted in a lower visual stage such as V1. In fact, even though the struc-
ture of the neural connections in this model is designed by the computational
requirements of contour and region grouping, this structure is consistent with
the structure observed physiologically (e.g., Gilbert 1992). The behavior of this
model in both the contour and region boundary enhancement is also consistent
with experimental data (Kapadia et al. 1995, Gallant et al 1994). These facts
further strengthen the plausibility of our proposal.

This model has many weaknesses. First of all, it has not yet implemented mul-
tiscale samplings and interactions in visual space. Consequently the model can
not for instance enhance fine detailed contours or to detect and segment regions
of very small sizes. Also, the model neural circuit, in particular, the structure
of the horizontal connections, must be different from the reality at least quan-
titatively. Therefore, the model behaves differently, at least quantitatively, from
human performance. For instance, the model sometimes find it easier or more
difficult to segment some regions than humans do. However, I believe that these
and many others are mainly the weaknesses of this particular, still primitive,
model implementation of V1. The principle of contour enhancement by integrat-
ing mutual facilitation and region segmentation by detecting the breakdown of
translation invariance in inputs should still hold. More informative experimental
data on the V1 structure should help to build a better V1 model to implement
the above principles for visual grouping.
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