Application of information theory to early visual
coding

Zhaoping Li, Feb. 2005.

This lecture notes are modified from my lecture at the Gatsby
Tutorial 1999, and my lecture notes for the computational
neuroscience course in 1998. See
http://www.gatsby.ucl.ac.uk/~zhaoping/visiontutorial.html for
more information, and a short and easy to read review article is
“Optimal sensory encoding” by L. Zhaoping in The Handbook
of Brain Theory and Neural Networks: page 815-819, The
Second Edition. Michael A. Arbib, Editor MIT Press 2002



N coding transform Output O

Question: Signal S + noise N

with output noise N°
What should be the coding transform? Why?

ed.. O=K(S+ N)+ N° K =7

Infomax Optimal K for O to contain most information about S
given cost constraints on output O.

Cost contraints:,

E.g., (1) optic nerve is long, but has limited thickness or
transmission capacity.

(2) The neurons have limited maximum firing frequency.



e.g., S=4151,...,51000x1000} an image of 1000x1000 pixels, one
byte per pixel, with 1 Mbyte date.

Find K s.t. O = {017---701000><1000} 1000 x 1000 pixels with
one bit per pixel -~ 0.12 Mbyte (the output cost), with O
containing most info. about S.

K;; is the receptive field for the output cell 3.



I1(0O; S) — information in O about S.

eg., O=S+ N, S€(0,255), N e (-0.5,0.5)
1(0; S) ~ logy 22° = 8 bits.

If S, N, gaussian with variances o2 and o%, — O gaussian with

2
i — . 1 o
variance o3 = 02 + o%. 1(0;S) ~ 51095 é

In general S, N, O are vectors with covariance matrices
R} =< 8;S; >, RY =< N;N; > RS =< 0,0, >,

' 8) ~ 1 det(R?)
[(0;5) ~ 51092 det(RN)"

e.g.. O=K(S+ N)+ N° S,N,N° are gaussians and
independent from each other.

KRNKT 4+ RN® s RN

K(RS 4+ RVKT 4+ RN® s RO



Cost — output power ¥; < 02 >
or output channel capacity >; H(O;) (H: entropy)
For gaussian signals, H(O;) x log < O? > + constant.

Infomax: Minimize

det(R°)



Infomax gives efficient coding (data compression)

Compression possible due to redundancy in S, 5; and §;
correlated in images.

1(0; S) = H(O) — H(O|S).

H(O) <3; H(O;),with = when O; and O; are independent or

non-correlated. Hence, given output cost Y, H(O;), H(O) or

I(O;S) can be maximized when O is decorrelated by a coding
K.

An efficient coding K captures the statistical (correlation)
structure in S, and gives cognitive advantages.



E.g., stereo coding:

Input SL SE from the left and right eye.

LgL LgR
: s __ [ <SS > <S5TST> )\ 4LoL 1
Correlation R” = ( < SRgL > < gRgR S =< 575 > .

0<r<1. (Assuming < SLSL >=« ghgh %)
Output 01,0 in the visual cortex, O; = CFSL + ClSE,
If CL = CE, the cell is binocular.

If CL > or « CE, the cell is monocular.



Eigenvectors of RS are ST = SL + SE with eigenvalues
< Stslk > (1+7).

SL gR _ g+ §— ST is decorrelated with S—.

The signal power in £ channels are the eigenvalues of RS i.e.,
(0?)2 x (1x7).

S+ is stereo blind, has larger signals, sums from two eyes.

S~ is the stereo informative "edge” signal, difference from two
eyes.

Let output O = KTST + K—S~ + noise.
If |[KT|> |K—|, the cell is binocular.

If |K~| > |K™T|, the cell is monocular.



Gains for the 4+ and - channels

Let OF = K*(ST + N*) + N°E. For either + or — channel,
minimize

K?(02+0%)+02
E =< 02> -)\I(0; S —< 02> —20 STIN NO
( ) 2 92 K2012V+0]2Vo
Hence (012\,/01%,0)1(2={ %%(1+\/1+22‘§V)—1 if K2>0
0 otherwise

For large signal-to-noise (og/ony > 1), K «x 1/og, lower gain to
larger signals to save output power < 02 >.

For small signal-to-noise (ocg/ony < 1), K ~ 0, avoid wasting
output power on input noises.



Signal-to-noise and Scale dependence
In the ST and S~ channels, (62/0%)+ o< (1 £ 7).
(Ug/a%\f)-l- > (0%/0]2\[)_

In the cortex, receptive fields come in different sizes or scales
(see later). Input signals are stronger for larger scales.

For large scale, when (02/0%)+ > 1, K~ > KT — monocular
cells.

For small scale, when (0%/0%)+ ~<1, K~ < KT — binocular
cells.



Multiplexing the channels

Most cortical cells O = CLSL 4+ CESE have CL % +£CE, ie., not
strictly binocular or monocular.

The 4+ and — channels are multiplexed, i.e.,

St St KtsTt
[(50) (5 )~ (5" )=
< cos(a) sin(a) > ( Ktst )

—sin(a) cos(a) K—=8~

for arbitrary «.
cos(a) sin(a)

—sin(a) cos(a)
(orthonormal) matrix UUT = 1 in 2-dimension.

The matrix U = ( ) IS an unitary



Infomax for gaussian signals E =Y; < 0?7 > —\I(O; S)

= Tr(R°) — 51097 —c(jjee’;c((}é{N))

IS invariant to such transform K — UK, since trace and
determinant of matrices are invariant to this transform.

Since
R° = K(RS -+ RNinput)KT -+ RNoutput_
RN — KRNinputKT _I_ RNoutput_

Many different coding K can minimize E to the same degree.
There could be different sets of receptive fields employed by the
visual system for efficient coding purposes. (The visual system
must choose one particular set for one particular purpose).

(There is no unique seperation of blind sources if the source signals are gaussian).



Mixing the 4+ and — channels:

cos(a)KTST +sin(a) K~ S~
(cos(a)KT + sin(a)K_)SL
+ (cos(a)KT — Sin(a)K_)SR

Q
|

In general, all ocularities (combinations of SL,SR) are possible.
When Kt > K—, O ~x (SL 4 S1) most cells are binocular.
When KT <« K=, O ~x (St — S1), leads to many monocular

(often nonlinear) cells.

As observed in the cortex.



Schematic of the steps to obtain infomax code

O =K(S+N) +N ©

o O O O O O O O O O O O Ks+N

Another unitary transform
for any special purpose
If needed.

o o o o o o o O O O O 0O

Diagonal matrix
<— transform ---gain to
each principle component.

o O Principle components of
S+N

<— Unitary transform

O O S+N



Color coding — analogous to stereo coding

Input Sred, g9reen gblue gre correlated (3 x 3 correlation matrix).

< STST>S < STSI> < STSb >
RS =] < 898" > < 8989 > < §98° >
< 8bsr > < §bg9 > < gbgb

ST a’S” + a959 + absb luminance
SY decmz;elate ~ | ST 4+ 1989 — St | = | chrominance;
Sb c’'ST — 959 chrominances

The luminance channel is gray level (black-white, or
color-blind), has highest signal power and most information
(see later).

The two chrominance channels (color selective) are (1) yellow -
blue , (2) red - green. They have lower signal-to-noise.



Different gains to Luminance/Chrominance channels from
Infomax

luminance ' K. luminance

. ain .
chrominancey |9 N K¢l . chrominanceq
chrominances Kc2. chrominances

Since og/on(Chrominance) < og/opn(Luminance),

K!' < Kl K2 — at large scale when og/on > 1,
K'> Kl K2 — at small scale when og/oy < 1,

Multiplex — various color selective or color blind cells.

In cortex: color blind cells for small scales, and color selective
cells for large scales.

In retina, — e.g., red-center-green-surround receptive fields
(later).



Retinal space coding

Input statistics:

Input S = {51, 59, ..., Sy} from photoreceptors.
Output O = {01,0,,...,Ox} at ganglion cells.

be =< 545, > decays with distance a — b, depends only on
a —b. Denote R%(a—b) = RY,.

Eigenvectors of RS are Fourier waves.

i.e., the Fourier component S} = Y, Sqe'*¢, for different
frequency k are decorrelated.

Eigenvalues of R° are Fourier transform of R°(a), i.e.,
0%(k) =< (Sh)? >x ¥, R°(a)etke,



< (Sh)? > 1/k2, decays with frequency k.
— The gain K(k) for S;:

K (k) o< k for small kK where signal-to-noise is large
(< (8)% > Joz, > 1)

K (k) decreases with k for large k where signal-to-noise is small
(< (5;6)2 > /0]2\/- <~1)

— K (k) band pass in k.




Sa — Sp=> "8,
a

— O(k) = K(k)S;,
= K(k)) e*as,

Hence, one could achieve infomax by constructing k=1,2,..., N
different receptive fields, each is a Fourier wave shaped,
infinitely large, i.e., for the k' output O(k), the synaptic weight
to the o’ input pixel S, is:

K, = K(k)etke

However, the visual system does not choose this code.



Ganglion cell receptive fields are not large Fourier waves, but
are small sized, center-surround shaped. They arise from
multiplexing the large Fourier fields with gains K(k). The
multiplexing unitary transform is the inverse Fourier transform.

Hence, the coding transform is:
Op = T e H*0(k) = 3, (31, e~ F =0 K (K)) Sa

Hence, the receptive field for pth output cell is is

S e R(b=a) (k) — a band-pass spatial filter, center-surround
shaped. It only depends on b — a — receptive fields for all cells
b=1,2,..., N has the same shape except for a shift in center
position b.



Adapting the receptive field to input intensity

When the signal power < (S'(k))? >= S2/k?, or S2, decreases,
the band-pass becomes low-pass, the center-surround (which is
a band-pass filter) becomes gaussian shaped (a low-pass filter).
This indeed happens to the retinal receptive fields.




Temporal coding in early vision

Input S; for time t = —o0,...,0,1,2,... Output
Ot — Ztlst K(t — t,)St/

— K(t—1t), causal, i.e., K(t—t) =0 if ' > t.

Coding transform steps:

S — Sl =3 e"s — K(w)S,
t

multiplex ZC(w)K(w)SZU

_>

w)=eWwit¢(w) iw(t—t w
C(w) ~ S (Y K (w)e (t=t)+¢w)y g,
t/ w

Hence O(t) = (3, K(w)eiw(t/_t’)+¢(w))5t/ Choose #(w) such
that K(t —t') = 3, K(w)ew(—t)+¢(w) is causual and has a finite
duration.



Transiant or sustained impulse responses
K(t —t') is also the impulse response of the cell.

S/, has a signal power < (S/,)2 > that also decays with w. Hence
K(w) is a band-pass or low pass in w depending on the overall
ensemble input intensity.

Under high input intensity (large receptive fields), K(w) is
band-pass, impulse response K(t —t') is transient.

Under low input intensity (smaller receptive fields), K(w) is
band-pass, impulse response K(t —t') is more sustained.



Multiscale coding in V1

e Alternatives to the spatial coding K = Ul'VUs, is of course,
first the K = VUs.

e Between the two extremes: K = U/ VU, and K = VUs,
there is a multiscale coding.

e Related to the wavelet coding, with translation and scale
invariance (under noiseless case, when K(k) x k).

If S'(z) = S(z + 6x) — OL[S] = n+5n[5”]
if $'(z) = S(\z), — 0%[S] = O%Toe(g/]

Receptive fields in dlfferent scales are scaled versions of
each other. K%(z) [, Sat1 gkk cos(kx + ¢a).



Ke(z¢ — \x) = )\1—2Ka+1(:13%+1 — ).

e T he phase of the receptive field ¢, is another freedom
allowed by the U symmetry.

e One of the choices for spatial frequency bandwidth is
log 3 ~ 1.5 octaves. — k,41/ka = 3.

e Orientation selectivity is a consequence.

e Quadrature structure: both edge and bar detectors, is also
a consequence, in order that the receptive fields within a
scale is roughly “translation invariant”.

Zhaoping Li and J. J. Atick “Towards a theory of striate cortex” Neural Computation 6,
127-146 (1994). Available on my web page



Color coding in V1, the multiscale representation

e Only cells selective to low spatial frequencies are color
selective.

e the Double opponency color selective cells in V1, rather
than the single opponency color selective cells in retina.



Stereo coding in V1, the multiscale representation
e T he signals from the two eyes only start to mix in V1.

e Input signal S(x,y,e), where e = left, right.
< S(z,y,e)S(',y,e) ># R(x — 2,y — y' )RS
< S(z,y,e)S(',y,e) >= R (z — o',y — o)

Correlation matrix Re,e’(ki)_

e Stereo edge signal L — R, the ‘-’' channel, stereo-blind signal
L + R, the ‘4’ channel. The 2 receptive fields

K2 =Kt+ K =L(KT+K )+ RKTFK),



KL=KtT+K = |KL|ei¢L
KB == KT 5 K- = |KE|e¥r

Disparity A¢ = ¢, — ¢R
Ad>090° if K—>KT Ap<90° if K- < KT

e Stereo coding: ocular dominance and disparity selectivity.

e K~ > K1 when spatial freq. k is small, where S/N is high.
K~ < KTt when spatial freq. k is large, where S/N is low.

e Correlation of stereo coding with the preferred spatial
frequency and orientation of the V1 cell.

Zhaoping Li and J. J. Atick “Efficient stereo coding in the multiscale representation”
Network Vol.5 1-18. (1994). Available on my web site



Motion coding in V1, the multiscale representation

e Directional selectivity as consequence:

K(z,y,t) =
[ dwdkk(k,w) (AT cos(kz + wt + ¢T) + A~ cos(kz — wt + ¢7))

When AT = 0, there is preferred directions of motion for
the stimulus: z = +(w/k)t

° A"‘/A_ can take many different choices allowed by U in
K =UVUs.

e When AT = A~ the receptive field can be almost
space-time seperable.



e Cells selective to higher spatial frequency k is selective to
lower temporal frequency w, making motion or direction
sensitivity less important for these cells.

e Cells can be selective to motion in depth, mostly for cells
with large receptive fields.
Kp g o [ dk [ dwKp, g(k,w)(AF pcos(kz + wt + 67 £) +
AZ,R cos(kx — wt + ¢Z,R))

Zhaoping Li “A theory of the visual motion coding in the primary visual cortex” Neural

Computation vol. 8, no.4, p705-30, May, 1995,. Available on my web page



Coupling the space and color coding

Retina receptive fields are red-center-green-surround, how
come?

Input S.;, ¢ = red, green (ignore blue for simplicity),
i=1,2,...,N (spatial location).

The transforms:

Sei = Sy, C = red+4green (luminance) , C = red-green
(chrominance), t =1,2,...,N.

For each channel C,

Sc; — Oc¢yi, where Og; has receptive field in space for channel C.



If C = Luminance, (red4-green), signal-to-noise is large, Og¢;
has center-surround receptive field.

If C = Chrominance (red-green), signal-to-noise is small, Og¢;
has gaussian shaped receptive field.

Multiplex OLuminance,i and OC’hrominance,i —

OLuminance,i + OChromina,nce,i OLuminance,i - OC’hrominance,i

— red-center-green-surround (or green-center-red-surround)
receptive fields.






Coupling visual coding in space, time, color, stereo

One could generalize, and obtain cells with receptive field
properties in all these dimensions. E.g., cells tuned to motion
in depth, tuned to orientation and direction, to color and scale,
etc. A whole spectrum of tunings can be found in the cortex.

One also finds the correlations between tunings to different
dimensions. E.g., correlation between

color-selectivity and orientation non-selectivity color-selectivity
and motion insensitvity ocularity and orientation selectivity
receptive field size and motion sensitivity

etc.



Over-complete sampling in V1

Why?



Some frequently used terms and concepts

e Whitening — K = UVUs, with Vj; as the gain for the it"
principle component.

LT

Another unitary transform
for any special purpose
if needed.

o o o O O O O O O O O O

Diagonal matrix
<— transform ---gain to
each principle component.

o O O O Principle components of
S+N

<— Unitary transform




1 Ri 2/\02 . R 2
(O'JQV/O'JQVO)’UZ-QZ- = { §Ri+012v(1 + M) 1 if v >0 (1)
0

otherwise
where R; is the eigenvalue or the signal power of the it

principle component of S. When R;/oa — oo, Vi o< (R;)1/?,
hence before the transform U, < O;0; >= 9;; constant. The
outputs are not only uncorrelated, but of equal variance —
like White noise. Each channel is filled to equal capacity
or dynamic range.

Decorrelation — This means rigorously P(X) = N, P(X;),
hence < (X;— < X; >)%(X;— < X; >)b « §;; for all a,b7# 0.
Sometimes, people also say decorrelation for second order
decorrelation only, when a =b = 1.

Redundancy only means Y, H(X;) > H(X). Hence, it is
equivalent to decorrelation. However, in the literature,



people only use the terms confusingly, as if redundancy
reduction and decorrelation are two different things. Of
course, if decorrelation is only restricted to second order
decorrelation, then redundancy reduction and decorrelation
are not exactly the same.

Efficient coding — they can be different definition of
efficient coding. For instance, some efficient coding means
to minimize ; < 02 > —AI(O; S), others may mean to
minimize Y, H(O;) — AI(O; S). These differ in the definition
of the cost to coding. And they may be other definition.
Hence, sometimes, efficient coding is equivalent to
redundancy reduction or to decorrelation, sometimes it is
not. It is not uncommon to find statements and claims in
literature without clear definitions of what the meanings
are.



e Informax — often means maximizing I(0O; S), subjecting to
some constraints. Hence, it can mean the same as (or
different from) efficient coding or redundancy reduction or
decorrelation depending on the definitions.

e Minimum predictability or least mutual information
between output units — often this means to minimize
I(O;; O;). Hence, this is equivalent to minimize
> H(O;)/H(O), or to reduce redundancy.

e Sparse coding — often not clearly defined, but it is often
understood as meaning to minimize the number of coding
units O; to be active. Let us make it more precise. Let
O; = 0 (or any discrete or definite token) as the usual
definition of being inactive, and O; # 0 meaning to be
active. Given an input S, let P(O; # 0]S) be the prob. of O;



active. Sparse coding can mean to minimize

>gP(S)>,; P(O; #0|S) =>,; P(O; # 0). However, the code
should also convey input information, meaning I(O; S)
should be maintained, otherwise, the sparsiest code is

P(O; # 0|S) =0 for all S. When P(O; #0) < 1/2,
minimizing P(O; #= 0) is the same as minimizing H(O;).
Hence, minimizing >; P(O; # 0) is not too far from
minimizing >, H(O;) (subjecting to a constraint on I(O; S)).
Hence, sparse coding and redundancy reduction is often
related or even equivalent depending on the definition.

Some related terms

Efficient codes, decorrelation, independence, non-redundant
codes, predictive codes, sparse codes, PCA, factor analysis,
ICA, MDL, Whitening, minimum mutual information between



output units, second order vs. higher order correlations,
degeneracy or non-unique-ness in blind source seperation.

In the literature of last 10 years or more, there have been many
different proposals for principles of coding. The terms above
have been among some of the “principles’, even though many
of them are equivalent or special cases of one another.



What are the M cells for?

One proposal: To extract information fast, not in terms of
information rate (bits/per second), but how long 7 one has to
wait before one can extract enough information from signals
O(t <t+ 1) about input stimulus S(¢).

Define O = {O(t),O0(t — 1),0(t — 2), ...}, and similarly St. Then
I(t, ") = I(t — ) = I(Ot; St') — 1(0t; St —1) is the amount of
information in O! about stimulus S(¢/) that is unpredictable
from previous stimulus St —1

dI(t)

Maximize F = ;>0 —t/T subject to cost constraints.

Implications for top-down feedback and top-down bottom up
iterations, from M pathway to P pathway feedback.

see Zhaoping Li “Different retinal ganglion cells have different functional goals”

International J. of Neural Systems Vol. 3, No.3 (1992) 237-248.



Other things I have not talked about

e Information rate per neuron, per spike, noise, reproducibility.

e Attentional bottle neck.

e Similar approaches to other sensory systems, audition,
olfaction, other animals.
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