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Given that visual input contains large amounts of

data and that the visual apparatus has limited

computational resources, it is necessary to limit

detailed processing to selected aspects of the input.

It is computationally efficient for much of this

selection to be carried out by bottom-up mechanisms.

To understand the selection process better, we

separate bottom-up from top-down mechanisms [1]

and consider a saliency map of the visual field

constructed by bottom-up mechanisms only, such that

a location with a higher scalar value in this map is

more likely to attract attention and be further

processed. Given its function, the degree of salience at

a visual location should be irrespective of the actual

feature (e.g. color, depth or orientation) at that

location (see Box 1). Hence, the salience of a red spot

at one location could be compared with, say, that of a

black vertical bar at another location [2]. The map

should also depend essentially on the organization of

the visual scene. Such a saliency map would have

obvious significance for visual functions.

Various groups have hypothesized that a saliency

map can be built by combining information from a

collection of separate feature maps, representing single

visual features, such as color or orientation, across

the input [3–6]. The feature maps are combined into a

single, master map to represent salience irrespective of

the actual features. For instance, Koch and Ullman [5],

and later Itti et al. [6], suggested that each individual

feature map represents the spatial contrast in its

associated feature in the input (via a competitive

process), and that the outputs from these feature

maps are summed to give a master saliency map. In

these theories, neither the neural mechanisms nor

the exact underlying cortical area responsible for the

saliency map have been clearly specified.

Building on previous work [1,3–7], I have recently

proposed that primary visual cortex (V1) provides a

saliency map such that, for a given visual scene, firing

rates of V1’s output neurons increase monotonically

with the salience values of the visual input in the

corresponding classical receptive fields (CRFs) [8–10].

The pyramidal cells in layers 2 and 3, which provide

V1 outputs, receive visual inputs (via feedforward

pathways) within their relatively small CRFs.

Horizontal intracortical interactions make each
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Contrary to how it might sound, signaling regardless
of features does not mean that the cells reporting
salience must be untuned to specific features. In
other words, here ‘regardless of’ means that in this
saliency map, the meaning of firing rates for
saliency is universal, and, given an input scene,
the same firing rate from two V1 (output) neurons
selective to different features means the same
salience value of the two corresponding inputs.
Thus, one of the cells might be color selective,
responding to a static red bar, and the other cell
tuned to motion, responding to a moving black dot,
but their salience value is the same. 

Usually, an image item, say, a short red bar, evokes
responses from many cells with different optimal
features and overlapping tuning curves or CRFs. The
actual input features have to be decoded in a complex
and feature-specific manner from the population
responses [a]. However, locating the most responsive

cell to a scene by definition locates the most salient
item whether or not features can be decoded
beforehand or simultaneously from the same cell
population. It is economical not to use subsequent
cell layers or visual areas (whether the cells are
feature tuned or not) for a saliency map; the small
CRFs in V1 layers 2 and 3 also mean that this saliency
map can have a higher resolution. 

Ultimately, our proposal needs to be validated
by examining whether the responses of feature-
selective cells in V1 do indeed signal saliences
(even though input features could be decoded from
responses of the very same cell population). For
simplicity (and without loss of generality), we assume
that only a single V1 cell responds to inputs within its
CRF, unless otherwise stated.
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Box 1. Signaling saliency regardless of features

‘...firing rates of V1’s output neurons

increase monotonically with the

salience values of the visual input...’



TRENDS in Cognitive Sciences  Vol.6 No.1  January 2002

http://tics.trends.com

10 OpinionOpinion

pyramidal cell’s response dependent on both the input

strength within its CRF and the contextual stimuli,

thus mediating the computation of salience. For

instance, bars having the same input contrast in an

image can evoke different V1 responses depending on

their relative positions and orientations (see Box 2),

and thus can have different saliences. It is well known

that each V1 cell can be tuned to one or more feature

dimensions, such as orientation, scale, color, motion

and depth. Whereas the cells’ ‘identities’ (the labeled

lines to higher visual centers) code the features and

locations of the underlying stimuli, according to our

proposal, the cells’ firing rates report the stimuli’s

saliences regardless of the actual features

represented by the cells. Hence, according to our

proposal, no separate feature maps, or indeed any

Opinion

Our model focuses on the part of V1
responsible for contextual influences:
layer 2–3 pyramidal cells, interneurons,
and horizontal intracortical connections
[a–d]. Pyramidal cells and interneurons
interact with each other locally and
reciprocally. A pyramidal cell can excite
other pyramidal cells monosynaptically,
or inhibit them disynaptically, by
projecting to the relevant inhibitory
interneurons. General and local
normalization of activities are also
included in the model [e]. 

V1 transforms input to output such
that the activity of each cell depends on
both its direct input (taken to be the
stimuli within its classical receptive field,
CRF), and the contextual stimuli outside
the CRF. The centers of the CRFs are
uniformly distributed in space. The
preferred orientations of the cells at a

given location span 180°. Images are
filtered by edge- or bar-like local CRFs.
The results of this processing form the
direct inputs to the model excitatory
pyramidal cells. The graded responses of
the pyramidal cells are initially
determined by the direct visual inputs
within their CRFs, and are then quickly
modulated by contextual influences
coming from intracortical interactions
(Fig. I). The temporal averages of the
responses of the pyramidal cells are the
outputs of the model, and report the
results of V1 processing. The horizontal
connections are designed:

(1) to be consistent with the V1
anatomy, linking cells that prefer 
similar orientations [a,b] and projecting
along the axes corresponding to the
preferred orientations of the pre-synaptic
cells [c];

(2) such that the resulting model
consistently reproduces the usual
phenomena of contextual influence that
are observed physiologically:
iso-orientation and general surround
suppression, and contour enhancement
[h,i]. (Refs [f,g,j,k] contain more details
of the model, including all the model
parameters necessary to reproduce our
results and discussion of the
computational role played by V1 in
pre-attentive visual tasks, such as
contour enhancement and texture
segmentation.)
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Box 2. A biologically based V1 model to simulate the saliency map
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Fig. I. The V1 model and its function. Shown are three input images (bottom) to the model, and their output
response maps (top). The thicknesses of the bars in each plot are made to be proportional to their input/output
strengths, for the purposes of visualization. The input strength of each bar is determined by its contrast. Note
that every input bar in each of these three images has the same contrast. A principal (pyramidal) cell can only
receive direct visual input from an input bar in its receptive field. The output responses depend on the input
contrasts and on the contextual stimuli of each bar.



subsequent combination of them, is needed to

produce a saliency map. In this article, we show that

being specific about the underlying neural

mechanisms allows us to gain substantial insight into

experimental data by linking psychophysical results

with V1 physiology and anatomy.

Simulating the saliency map using a V1 model

To test our proposal, we simulate our saliency map

using the only existing biologically based V1 model

(Box 2) of contextual influences that performs all

three tasks of texture segmentation [11], contour

enhancement [12] and pop out. We apply the map to

visual search tasks (briefly overviewed in Box 3),

assuming that the ease of performing each task is

determined by the salience of the search target in

the task. The model is constructed using known

anatomical and physiological facts about the neural

elements and horizontal intra-cortical interactions in

V1, for instance, that the horizontal connections tend

to link V1 cells tuned to similar orientations [13–16].

The same horizontal connection strengths (and all

other model parameters) are used for all examples in

this article; no special tailoring has been applied. 

The model reproduces the known excitatory and

inhibitory contextual influences observed in V1

physiology associated with contour integration and

texture segmentation [17,18]. In particular, a model

cell’s response to a high contrast bar within its CRF is

suppressed when the bar is surrounded by other bars

of the same orientation (iso-orientation suppression).

This contextual suppression is reduced when the

contextual bars are oriented randomly, and is reduced

further when the contextual bars are oriented

orthogonally to the bar within the CRF [17]. However,

as is also physiologically observed [18], the model

cell’s response is enhanced when the bar within the

CRF and the contextual bars link to form a smooth
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Visual search is the task of finding a target
item among distractors in a visual input
[a–f] (Fig. I). Reaction time to find a target
typically increases with the number of
distractors. The rate of increase (Fig. Ie)
characterizes the ease or efficiency of the
search. When the target has a feature that
is absent in the distractors, the search can
be very efficient when the feature is in a
basic feature dimension such as color,
orientation, depth or motion direction.
Such a search is termed a feature search
[a] (e.g. Fig. Ia). 

When the target is only distinguishable
by a particular conjunction of features
(e.g. green and vertical in Fig. Ib), each of
which is present in the distractors, the
search is termed a conjunction search.
Some conjunction searches are very
difficult, like the example shown here,
and others can be easy [g,h]. When the
target is characterized by lacking a
feature that is present in the distractors
(e.g. Fig. Ic), the search is more difficult
than a feature search. Dissimilarity
between distractors and similarity between
the distractors and the target make
searches more difficult [d] (e.g. Fig. Id).

Visual search asymmetry occurs
when a single target item A among a
background of distractor items B is more
difficult to find than a target item B among
distractor items A [f] (see Figs 2 and 4 in
main article for examples). Earlier work
[a,b] categorized searches into efficient or
parallel searches and inefficient or serial
searches, and were presumed to be

carried out by pre-attentive and attentive
mechanisms respectively. Later work
found a continuum of search difficulties,
depending on the inputs [c–e].
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Box 3. Brief overview of visual search

TRENDS in Cognitive Sciences 

Feature search

Dissimilar distractorsTarget lacking a feature

Conjunction search

(d)

(e)

Number of distractors

In
ef

fic
ie

nt
 s

ea
rc

h

Efficient search

R
ea

ct
io

n 
tim

e

(a) (b)

(c)

Fig. I. Examples and schematic illustrations of visual search tasks. (a) The target horizontal bar differs from the
distractor bars in orientation. (b) The vertical green bar (target) is distinguished from distractor (red vertical or
green horizontal) bars by the conjunction of green and vertical features. (c) The target square is without an inner
dot. (d) The target is the vertical bar, harder to find because the distractors have dissimilar orientations. (e) The
ease or efficiency of the search tasks are often characterized by the slope of the plot of reaction time versus the
number of distractors. A steeper slope is taken to indicate a more difficult (inefficient) search.



(isolated) contour (i.e. contour enhancement). A

vertical bar among horizontal bars (a pop-out target)

or the bars at a texture boundary induce higher

responses because they have fewer iso-orientation

neighbors than other input bars (see Box 2, Fig. I).

Furthermore, because of contour enhancement, the

vertical bars at the vertical texture border induce

higher responses than the horizontal bars at the same

texture border. As it is consistent with the known V1

anatomy and physiology, the model is an attractive

candidate to explain the psychophysics of salience.

Salience of an image item, i, is viewed in relation

to a large or whole input image. It can thus be

assessed by comparing the evoked response, S
i
, to the

population of responses to all visible input items (see

Fig. 1b). As salience merely serves to order inputs for

further processing, only the order of the saliences is

relevant and it is computationally unnecessary to

have an absolute saliency measure. Hence, the most

active cell points to the most salient item, the second

most active cell to the next most salient item, and so

on. To relate this to empirical data, a measure of the

saliency order, or simply salience, for item i can be

assessed by the z-score,

[1]

where S
–

and σ
s
are respectively the mean and standard

deviation of the response S
i
over all input item. As

argued above, the brain need not calculate these z
i

scores for sequential attention deployment. z-scores of z

>> 1, z ∼ 1, and z < 0 indicate, respectively, input items

that are very salient, typical but more salient than

average, or less salient than average (Fig. 1c). z-scores

for various texture boundaries or smooth contours can

also be calculated [19]. The ease of a visual search

task (see Box 3) should, excluding top-down factors,

such as terminating the search because of special

knowledge, increase with the target’s z-score [9].

Testing the saliency map on visual search tasks

The highly salient horizontal bar in the target cross in

Fig. 1c makes the whole cross conspicuous. We

henceforth define the salience of a composite image

item, such as a cross, as the salience of its most salient

component. When a target is defined by a unique

feature, such as the horizontal bar in Fig. 2a and c,

that is absent in the distractors, it pops out because

this unique feature suffers less iso-orientation (or

iso-feature) suppression than other image features [9].

sii SSz σ)( −≡
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Fig. 1. (a) V1’s output as a saliency map is viewed under the
idealization of the top-down feedback to V1 being disabled.
(b) Histogram of responses Si to all bars, i, in an input image, a small
part of which is plotted in (c). Given a cell response, Si, the saliency
order of the inducing stimulus is assessed by relating to the mean S

–

and standard deviation σs of the population of responses, zi = (Si – S
–
) / σs.

(c) An example of the output (right) from the V1 model, given an input
stimulus (left) of horizontal and vertical bars of equal contrast. The
input simulates the search task of finding a target cross among
distractor vertical bars. The thicknesses of the bars in each plot (as in
all the figures in this article) are made to be proportional to their
input/output strengths, for the purposes of visualization. The model
output values, Si, and saliency measures, zi, are given for four bars.
The most salient horizontal bar in the cross has z = 7, because its
evoked response is significantly higher than the population average.
(Values of z ≥ 3 are likely to be for the most salient item in an image.)
One of the distractor vertical bars has z = −1.3 because its evoked
response is below the background average. Another distractor vertical
bar has z = 1.7; its evoked response is above the background mean but
is not an outlier with respect to the population response.



When the target is distinguished by a lack of a feature,

as in Fig. 2b, or a conjunction of features present in the

background, as in Fig. 2d, the target does not pop out,

because the target features experience similar iso-

orientation (or iso-feature) suppression to the

background features [9]. Hence, the orientation- or

feature-specific contextual influences in V1 provide a

plausible neural basis underlying feature-integration

theory [4], or the related texton theory [20].

Whereas a target with z ≥ 3 pops out and another

with z < 0 requires serial search, targets with z-scores

between, and in particular, in the middle of, the two

extremes, will need searches that are neither purely

parallel nor definitely serial. As previously noted, the

separation between parallel and serial search in

earlier work is probably an idealization of the actual

visual processes [1,4,20–22].

A homogeneous background makes the population

of responses S less variable than otherwise, leading to

a smaller σ
s
. This should make a moderately salient

target, with 0 < z < 2, more salient with a boosted

z-score. Background irregularity can result from

random positioning of distractors and/or

dissimilarities between distractors, making

contextual influences noisy. Fig. 3a–c, presents an

example of this in the model where either of the two

irregularities reduces the target’s z-score from z = 3.4

to z = 0.22, 0.25. In Fig. 3d and e the target vertical bar

has a negative z in both the homogeneous and

inhomogeneous backgrounds. Interestingly, the

target is easier to spot in Fig. 3e than in Fig. 3d, even

though its z-score in Fig. 3e is slightly lower. This is

because a homogeneous background increases the

z-scores of the nearest neighbors of the target. These

neighbors are on average more salient than other

distractors because the target, by lacking a horizontal

bar, exerts weaker general and iso-orientation

suppression on them. The highest z-score among the

nearest neighbors of the target increases from z = 0.68

in Fig. 3d to z = 3.7 in Fig. 3e. This attracts visual

attention to locations near the target and makes the

target easier to spot.

Subtle examples of asymmetries in visual search

Figure 2a and b show a simple example of search

asymmetry: the cross is easier to spot among vertical

bars than is a vertical bar among crosses. Other

examples of asymmetry can be much subtler, when

neither target nor distractors has a basic feature

(e.g. a particular orientation) that is absent in the

other. In these cases, the phenomena are

psychophysically quite weak, and can often no longer

be understood in the model simply by iso-orientation

(or iso-feature) suppression. Local co-linear

excitation and general (orientation non-specific)

surround suppression also play roles. 

Such search examples, with their small changes

in search difficulties with input stimuli, can thus

provide a more severe test of our saliency map

proposal. Figure 4 shows that the model can account

for the signs of the typical examples of such

asymmetry, using stimuli modeled after those of

Treisman and Gormican [23]. The responses to

different items differ only by small fractions (that is,

S
i
/S
– ∼ 1), and are hard to visualize in a figure.

However these fractions are significant for the more

salient targets when the background saliences

(responses S) are sufficiently homogeneous (i.e. σ
s
is

sufficiently small) to make the z-score large.

Predicting V1 physiology/anatomy from psychophysics

The idea that V1 produces a saliency map suggests a

mechanistic definition of a ‘basic visual feature’. This

has been defined psychophysically in terms of ‘pop out’:
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a target having a ‘basic feature’will pop out of a

background of distractors that lack this feature [4].

Our model suggests that the following two neural

substrates are necessary for such a basic feature: 

(1) a population of V1 cells selective or tuned to various

values along this feature dimension to sample the

features; (2) selectivity or tuning of the horizontal

intra-cortical connections to the optimal feature values

of both the pre-synaptic and post-synaptic cells in this

feature dimension, such that iso-feature suppression,

or the lack of it, can be manifested in response levels. 

For instance, because the horizontal connections

mediating suppression predominantly link cells

preferring the same or similar orientations,

iso-orientation suppression within an iso-orientation

background will be strong, but iso-orientation

suppression on a target bar whose orientation is

sufficiently different will be weak. Whereas tuning of

the CRFs is a familiar concept, the tuning of the

intracortical connections is relatively new, and we

advocated it in our framework. This connection

tuning should be the main cause for the ‘just

noticeable difference’ [26] and ‘orientation categories’

[27] in pre-attentive vision. 

More importantly, the insight of the two types of

tuning helps to predict when some conjunctions of

two features (e.g. orientation and motion) will

enable pop-out or become ‘basic’ [9,28,29]. The

requirements are: (a) if V1 cells are simultaneously

(or conjunctively) tuned to feature values of both

feature dimensions, such as orientation and motion;

(b) if the horizontal connections are simultaneously

(or conjunctively) tuned to optimal feature values in

both feature dimensions (e.g. vertical orientation

and rightward motion direction) of the pre- and

post-synaptic cells. Requirement (a) is certainly not

possible, for instance, for a conjunction of two

orientations (as in Fig. 2d), as few V1 cells respond

to combinations of two sufficiently different

orientations. Indeed orientation conjunctions produce

among the most difficult search tasks [22]. 

Conjunction of color and orientation is also more

difficult to search than a basic feature search [30]

because most V1 cells selective to color are not

orientation selective [31,32]. Our original V1 model

was augmented to include color-selective cells

untuned to orientation, as well as cells with a broader

tuning to both color and orientation – the conjunction

cells. The intracortical connections preferentially link

cells tuned to similar feature values in color and/or

orientation. This is a natural extension, backed by

physiological data [32], of the connection structure in

orientation dimension. 

Figure 5 demonstrates that it is the cells tuned to

color/orientation conjunctions, as well as the

corresponding intracortical connections, that make a

search for such a conjunction easier. However, cells

simultaneously tuned to both orientation and motion
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Fig. 3. The model’s account of the effect of background homogeneity on search difficulty, which
was observed by Duncan and Humphreys [21]. Rubenstein and Sagi have suggested a related idea
that random background textural variability acts as noise and limits search performance [41].
(a–c) Searches for a target bar tilted 45° clockwise from the vertical, among distractors which are:
(a) irregularly placed identical bars tilted 15° clockwise from vertical; (b) regularly placed but
dissimilar bars randomly tilted 0°, 15°, or 30° clockwise from vertical; or (c) regularly placed
identical bars tilted 15° clockwise from vertical. The z-scores for the targets are listed immediately
below each example. (d,e) Search for a vertical target bar among crosses. The z-scores for a
distractor next to the target are shown below those for the target. Although a homogeneous
background decreases the z-score of the target in (e), the target is easy to spot simply because its
nearest neighbor has an increased salience to attract attention.

TRENDS in Cognitive Sciences 

z = 0.41 z = –1.4 z = –0.06 z = 0.3 z = 0.7

z = 9.7 z = 1.8 z = 1.07 z = 1.12 z = 2.8

E
as

ie
r

M
or

e 
di

f c
ul

t

(a) (b) (c) (d) (e)

Fig. 4. The model behavior on five examples of asymmetries in visual search, with the target z-scores
from the model under each search example. The model agrees with human visual behavior on the signs of
these asymmetries, that is, on which search of each pair is relatively easier. (a) Closed vs open circles. The
gap in a circle reduces co-linear facilitation as well as reducing the general and iso-orientation suppression
between the circle segments. Apparently the decrease in suppression outweighs the decrease in
facilitation, thus making the gapped circle more salient. The z-score is further boosted by the artificially
regular background. (b) Parallel vs convergent pairs. A pair of parallel bars is less salient because stronger
suppression occurs between the two (iso-oriented) bars. (c) Short vs long lines. Co-linear excitation makes
longer lines more salient than shorter ones. (d) Straight vs curved lines. Co-linear excitation within and
between image items is not so sensitive to a slight change in item curvature, but iso-orientation
suppression is stronger in a background of straight (than curved) lines. Thus, the curved target is more
salient. (e) Circle vs ellipse. Whereas interaction between circles (via the circle segments) depends only on
the circle–circle distance, interaction between ellipses depends additionally on another random factor, the
orientation of the ellipse–ellipse displacement. Hence, noisier cortical responses (larger σs ) are evoked
from a background of ellipses than from circles, submerging responses (i.e. reducing z ) to a target circle.

‘A particular strength of [the]

model is that it links V1 physiology

and anatomy with psychophysics.’



direction, or orientation and depth, are abundant in

V1 [33,34]. As psychophysical data suggest that

searches are easy for targets defined by a conjunction

of motion and form (orientation) [29], or by a

conjunction of depth and either motion or color [28],

we predict that there should be (1) horizontal

connections that link pre- and post-synaptic cells

preferring similar motion directions and similar

orientations, and (2) connections linking cells

preferring similar disparities and motion directions

(and/or color). Most recent physiological evidence is

consistent with prediction (1), showing that

contextual suppression from an iso-orientation

surround is reduced in many V1 cells when the

surround moves in the opposite direction from the

center stimulus (H.E. Jones et al., pers. commun.).

Understanding psychophysics from V1

physiology/anatomy

In contrast to conjunction searches are the double-

feature searches, for which the target differs from

distractors in more than one feature dimensions. Using

the example of a red vertical target bar among green

horizontal bars, the target evokes responses in three

cell types: (1) non-orientation selective cells tuned to

red, (2) non-color-selective cells tuned to vertical, and

(3) cells tuned to both red color and vertical orientation.

Types (1) and (2) are single-feature tuned cells and type

(3) is double-feature tuned. The most responsive of

them should determine the salience of the target. 

We assume that the cells tuned to single features

determine the ease of the single-feature searches

(e.g. for a red target among green distractors or a

vertical bar among horizontal ones). We thus predict

that double-feature search should be somewhat easier

than each of the two corresponding single-feature

searches. Furthermore, a lack of sufficient double-

feature-tuned cells should diminish the advantage of

the double-feature search over the easier one of the two

single-feature searches. Because V1 has fewer cells

doubly tuned to color and orientation than to motion

and orientation, the double-feature advantage should

be stronger for motion-and-orientation than color-and-

orientation, as recently observed psychophysically [2].
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Target z = 5.3Target z = –0.1

Model input
Output from model

without the conjunction cells
Output from model

with the conjunction cells
(a) (b) (c)

Fig. 5. Demonstrating the importance of conjunction cells for conjunction searches. (a) The target
is the blue, right-tilted, bar (in the middle of the input image) among red, right-tilted, and blue, left-
tilted, distractor bars. A colored and oriented bar gives input to cells whose optimal orientation
and/or optimal color are close to the bar’s feature(s). The model responses are visualized by the
thickness of the black bars for non-color selective cells, the size of the colored circles for non-
orientation selective cells, or the size of the colored and oriented ellipses for the broadly tuned
conjunction cells. The most responsive cell to each bar, whether or not it is color and/or orientation
tuned, reports the saliency signal and results in a z-score. The z-scores for the target when the
color/orientation conjunction cells are silenced or removed from the model (b), or are available
(c) are indicated below each output. Decreasing the input sensitivity of the conjunction cells,
and/or increasing the feature tuning widths of the corresponding intracortical connections,
decrease the target saliency. The example illustrated in (c) used parameters that give very efficient
searches [30] to illustrate an extreme example.

• Reaction times in search tasks depend both on
the bottom-up saliency map and on top-down
attentional effects, as well as on the specific
search algorithms used. For instance, it will
make a difference whether the subject knows
what the target is, whether the search depends
stochastically or deterministically on the
saliences of image items, and whether there is
infinite or limited short-term memory for the
image locations that have already been visited
[38]. These questions are being studied
intensively by the vision community, but until we
have detailed answers, our saliency map can
provide only relative measures of task difficulties
given the same top-down and algorithmic factors.

• If V1 provides a bottom-up saliency map in its
initial responses to the visual input, what is the
functional role of its later responses, which are
affected by top-down feedback?

• Some examples of ‘pop-out’ and search
asymmetries arise from seemingly higher-order

features such as 3-D shape or character
familiarity [22,39]. They have led to proposals
that attribute ‘pop-out’ to higher cortical areas
(S. Hochstein and M. Ahissar, pers. commun.).
Is it possible that these higher-order features are
built into the intracortical connections in V1? 
Can ‘higher-order’ saliency maps co-exist 
with the one in V1, and if so, which saliency
map dominates?

• Physiological experiments have found neurons
in cortical areas beyond V1 whose activities
correlate with object salience [6,40]. Are these
‘saliency’ signals generated within the cortical
area where they are measured or relayed from
lower cortical areas?

• What are the roles of higher visual areas that
directly receive the V1 outputs? How should the
higher-visual areas extract the feature values of
the visual inputs in addition to, and without
being corrupted by, the salience information
from V1?

Questions for future research



Physiological data [31,32], together with computational

considerations [35], suggest that the color/orientation

conjunction (double-feature) cells in V1 are tuned to

only a limited range of spatial scales. We thus predict

that manipulating the scale of visual stimuli (at a given

visual eccentricity) could make the conjunction search

more or less difficult, by decreasing or increasing the

direct activation to the conjunction cells.

A particular strength of our model is that it links

V1 physiology and anatomy with psychophysics. In

comparison, the popular two-stage psychophysical

models, which perform operations such as local

surround inhibition on the non-linearly transformed

and spatially filtered input, cannot make specific

enough physiological predictions because they use

abstract contextual interactions [36,37]. We also

predicted, and subsequently tested and confirmed

(A. Popple and Z. Li, pers. commun.), a perceptual

bias in the location of the border between two

iso-orientation textures, owing to the asymmetric

distribution of the strongest outputs with respect to

the border [19] (see Box 2).

Conclusion

By applying our V1 model to visual search tasks, 

we have demonstrated that the primary visual cortex

could provide a saliency map. This map is signaled in

the responses of feature-selective cells, and no

separate feature maps or any subsequent

combination of them is necessary. By relating V1

responses to saliences, and saliences to the ease of

visual search, our framework can account, at least

qualitatively, for how and why the search difficulty

depends on visual features and their conjunctions or

combinations, and on the spatial arrangements of the

image items. Not only can our V1 model explain large

differences in search difficulties, such as between the

feature and conjunctive search tasks, but it also

accounts for the more subtle differences in examples

of search asymmetry such as those of Treisman and

Gormican [23] (although there is much to be improved

quantitatively from our current model). Our

computational framework provides a unique link

between psychophysics and V1 physiology/anatomy,

and makes testable predictions.
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