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Extended Abstract

System identification addresses the important prob-
lem of estimating the answers to what will happen if...
questions. In black-box system identification, minimal
assumptions are made about the unknown system and
its dynamics are estimated entirely from control input
and observational data. Black-box methods for identi-
fying linear systems are well-established (Ljung, 1999).
The perspective of these methods is often taken in non-
linear black-box system identification as well, with a
regression-based focus on squared loss minimization
(Sjöberg et al., 1995).

With the black-box motivation of making as few as-
sumptions about the unknown system as possible,
we frame the system identification problem as a ro-
bust statistical estimation task by following the prin-
ciple of maximum causal entropy (Ziebart et al., 2010;
2013). It prescribes the least committed (or most un-
certain) stochastic process possible that matches ob-
served properties of the unknown system. This for-
mulation provides a discriminative approach for esti-
mating an unknown controlled dynamical system that
robustly minimizes the predictive log loss for observa-
tion sequences when the system is driven by a known
control policy.

Controlled Systems as Interacting Processes

A controlled dynamical system can be viewed as
a sequence of system observations, O1:T , and a
sequence of control actions, A1:T (both random
variable sequences). Estimates of future obser-
vations given previous observations and controls,
T (ot|o1:t−1,a1:t−1), are needed to construct good con-
trol policies, π(at|a1:t−1,o1:t−1).

In this work, we employ the causally condi-
tioned probability, denoted as P (y1:T ||x1:T ) ,∏T
t=1 P (yt|y1:t−1,x1:t) or P (x1:T ||y1:T−1) ,

∏T
t=1 P (xt|x1:t−1,y1:t−1), from directed informa-

tion theory (Marko, 1973; Massey, 1990; Kramer,
1998) to represent the interactions between these
variable sequences. Using {P (y1:T ||x1:T )}, we denote
a fully defined causally conditioned probability dis-
tribution (i.e., for all pairs of sequences). The joint
probability distribution of observation and control
sequences factors into two interacting processes,

P (a1:T ,o1:T ) = π(a1:T ||o1:T ) T (o1:T ||a1:T−1), (1)

a known control policy, π(a1:T ||o1:T ) ,∏T
t=1 π(at|a1:t−1,o1:t), and the system’s dynam-

ical process governing generated observations,
T (o1:T ||a1:T−1) ,

∏T
t=1 T (ot|o1:t−1,a1:t−1). The

key characteristic of these causally conditioned
probabilities are that future values (of states and
controls) do not influence earlier conditioned vari-
ables (states and controls). This is an important
contrast with conditional probability distributions,
P (y1:T |x1:T ) =

∏T
t=1 P (yt|y1:t−1,x1:T ), which are

conditioned on the entire sequence, x1:T .

A Robust Estimation Formulation

Our solution to the task of estimating the unknown
process, T (o1:T ||a1:T ), builds upon the principle of
maximum entropy (Jaynes, 1957). This principle
provides a robust statistical estimation framework
(Topsøe, 1979; Grünwald & Dawid, 2004) for struc-
tured prediction tasks corresponding to unknown
joint, marginal, or conditional probability distribu-
tions. Conditional random fields (Lafferty et al.,
2001) are a very successful example of the approach
in practice for estimating conditional distributions,
P (y1:T |x1:T ).

Recently, the principle of maximum causal entropy
(Ziebart et al., 2010; 2013) has extended the appli-
cability of the maximum entropy approach to settings
of interacting processes. This approach has been pre-
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viously employed for predictive inverse optimal control
tasks of estimating control policies in decision pro-
cesses with known dynamics. For example, predict-
ing the motion trajectories of mouse cursors in point-
ing tasks (Ziebart et al., 2012). System identification
investigates the opposite problem: estimating system
dynamics under a known control policy.

In the system identification setting, a natu-
ral desire is to minimize the predictive loss
of each observation variable in the sequence:
loss({T̂ (ot|history)}, {T (ot|history)}), where the first
probability distribution terms, T̂ (ot|history), are from
the estimated distribution and the second, P (ot|hist.),
is the true distribution (each given the history of pre-
vious observations and control actions, o1:t−1,a1:t−1).
When employing the conditional log loss, which ex-
presses the number of bits of information needed to de-
scribe a sample from the true distribution, P (ot,hist.),
using an encoding scheme based on the estimate
{T̂ (ot|hist.)}, the sum of all of these losses reduces
to1:

−
T∑
t=1

∑
hist.,ot

P (ot,hist) log2 T̂ (ot|hist.) (2)

= −
∑

o1:T ,a1:T

T (o1:T ||a1:T−1)π(a1:T ||o1:T ) log2 T̂ (o1:T ||a1:T−1)

This sequence loss, known as the causal log loss
(Ziebart et al., 2013), corresponds to the expected
number of bits of information needed to describe a
sample from the sequence using an encoding based on
the estimate T̂ (o1:T ||a1:T ).

Following the adversarial log-loss minimization argu-
ment of Topsøe (1979) and Grünwald & Dawid (2004),
Theorem 1 establishes the relationship between robust
causal log-loss minimization and maximizing causal
entropy.

Theorem 1. When Lagrangian duality holds (i.e.,
mild feasibility requirements), the process estimate
that robustly minimizes the causal log-loss of Equa-
tion 2, {T̂ (o1:T ||a1:T−1)}, is equivalent to maximizing
a causally conditioned entropy (Ziebart et al., 2010;
2013),

H(O1:T ||A1:T−1) ,
T∑
t=1

H(Ot|O1:t−1,A1:t−1) = (3)

−
∑

o1:T ,a1:T

T (o1:T ||a1:T−1)π(a1:T ||o1:T ) log2 T (o1:T ||a1:T−1),

1Our notation assumes univariate discrete-valued obser-
vation and action spaces in our notation, but the approach
is also applicable to multivariate and/or continuous-valued
spaces.

which is a measure of the uncertainty of the process
T (o1:T ||a1:T−1).

Proof. Robust log loss minimization is formulated
as a sequential game in which an observation dy-
namics estimate is first chosen, {T̂ (o1:T ||a1:T )}, fol-
lowed by an adversarially chosen evaluation dynamics,
{T (o1:T ||a1:T )}:

min
{T̂ (o1:T ||a1:T−1)}

max
{T (o1:T ||a1:T−1)}∈Ξ

(4)

−
∑

o1:T ,a1:T

T (o1:T ||a1:T−1)π(a1:T ||o1:T ) log2 T̂ (o1:T ||a1:T−1)

= max
{T (o1:T ||a1:T−1)}∈Ξ

min
{T̂ (o1:T ||a1:T−1)}

(5)

−
∑

o1:T ,a1:T

T (o1:T ||a1:T−1)π(a1:T ||o1:T ) log2 T̂ (o1:T ||a1:T−1)

= max
{T (o1:T ||a1:T−1)}∈Ξ

H(O1:T ||A1:T−1), (6)

in which the first equality follows from Lagrangian du-
ality, and the second from solving the internal opti-
mization, T̂ (o1:T ||a1:T−1) = T (o1:T ||a1:T−1).

Note that in this adversarial formulation of the dynam-
ics estimation task, the adversarially chosen dynamics
are constrained to match certain known properties, de-
noted by the set Ξ.

Constraints for Generalized Predictions

Choosing appropriate properties of observed action-
observation sequences for the estimated process to im-
itate or match is very important. The most salient
properties of the unknown process should be employed
(Jaynes, 1957). Using a large set of properties to nar-
rowly define the constraint set Ξ (of Equation 6) will
lead to overfitting when limited amounts of data are
available. However, constraints that define the set Ξ
too loosely will not provide good predictive perfor-
mance either.

In this work, we consider constraints that require the
observation dynamics process to be similar to statistics
of observed trajectory sequences, f(o1:T ,a1:T ) ∈ RK ,
in expectation:

{T (o1:T ||a1:T−1)} ∈ Ξ iff (7)

|ET ,πi
[f(O1:T ,A1:T )]− ci|(1|2) ≤ εi ∀i,

where: each πi is a different employed policy;

ci = ET̃ ,π̃ [f(O1:T ,A1:T )] (8)

=
∑

o1:T ,a1:T

T̃ (o1:T ||a1:T−1)π̃(a1:T ||o1:T )f(o1:T ,a1:T )
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is a vector of statistics collected from empirical obser-
vation of that policy’s interactions with the dynamical
system; and εi is a bound on the L1 or L2 norm of the
difference from past observations based on the sample
size (and expert knowledge of the similarity between
policies).

Maximum Causal Entropy System
Identification

Combining the maximum causal entropy objec-
tive (Equation 3)—motivated as a robust log-loss
minimizer—and the similarity constraints between
observed action-observation sequences (Equation 7),
yields a constrained optimization problem:

max
{T (o1:T ||a1:T−1)}

H(O1:T ||A1:T−1) (9)

such that:

|ET ,πi [f(O1:T ,A1:T )]− ci|(1|2) ≤ εi ∀i,

where either the L1 or L2 norm is employed.

The objective function of Equation 9 is concave and its
set of constraints define a convex set. Thus, standard
convex optimization techniques can be employed to ob-
tain the maximum causal entropy distribution. How-
ever, the primal optimization is defined over a large
set of variables: the causally conditioned probabili-
ties, P (o1:T ||a1:T ). As a more efficient alternative, we
instead investigate the dual optimization problem.

Parametric Distribution Form

Following the previously developed theory of maxi-
mum causal entropy (Ziebart et al., 2010; 2013), we
consider the dual optimization problem for ε = 0 (for
simplicity). Via Lagrangian duality, the decomposed
conditional probabilities of the transition dynamics
process in the optimization of Equation 9 has a form
that satisfies the following set of equations:

∀o1:T ,a1:T , −
T∑
t=1

log T (ot|o1:t−1,a1:t−1) (10)

+
∑
i

πi(a1:T ||o1:T )

π(a1:T ||o1:T )
θT
i f(o1:T ,a1:T ) = Z(a1:T ),

in addition to constraints requiring the
T (ot|o1:t−1,a1:t−1) terms to define a valid con-
ditional probability distribution (normalization,
non-negativity).

The exact form of the distribution depends on
the specific sequence statistic function, f(o1:T ,a1:T ).
When this function additively factors over timesteps,

f(o1:T ,a1:T ) =
∑T−1
t=1 g(ot, ot+1, at), the resulting dis-

tribution will be first-order Markovian, recursively de-
fined as follows:

T (ot|ot−1, at−1) , eQ(ot,ot−1,at−1)−V (ot−1,at−1), (11)

where:

Q(ot, ot−1, at−1) ,
∑
at

π(at|ot)V (ot, at)

+
∑
i

πi(at|ot)
π(at|ot)

θT
i g(ot, ot−1, at)

V (ot−1, at−1) , softmax
ot

Q(ot, ot−1, at−1),

and softmaxx f(x) = log
∑
ef(x).

We note that this recursive definition is closely related
to the value iteration algorithm (Bellman, 1957) for
optimal control. Thus, this approach to system iden-
tification will in general non-myopically make predic-
tions so that the future interactions between the con-
trol policy and the unknown system dynamics will be
similar to previously observed behavior.

The sets of Lagrange multipliers, θi ∈ RK , are chosen
to satisfy the constraints of Equation 9. This is equiv-
alent to a maximum likelihood estimation problem,
where the observation-action trajectories from other
policies, πi, are probabilistically re-weighted by the ra-
tios of policy probabilities. Note that the singularities
of this reweighting (π(a1:T ||o1:T ) = 0) can be inter-
preted as allowing the system to behave determinis-
tically in a way that most satisfies the optimization
constraints.

Further, if these local functions are quadratic (with
real vector-valued observations and controls), and the
control policy is conditional Gaussian,

g(ot, ot+1, at) = vec


 ot
ot+1

at

 ot
ot+1

at

T
 ,

the observation transition dynamics, T (ot|ot−1, at−1),
will be conditional normal probability distributions.
The can then be efficiently computed in closed form,
but are trained discriminatively rather than genera-
tively. For inverse optimal control, this type of model
has been recently investigated (Ziebart et al., 2012;
Levine & Koltun, 2012).

The relaxation to softer constraints (ε > 0) introduces
L1 or L2 regularization terms for the distribution pa-
rameters in the dual optimization problem (Dud́ık &
Schapire, 2006).
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Related Work

There has been an ongoing debate between the use of
generative and discriminative techniques in statistical
machine learning (Ng & Jordan, 2002; Jebara, 2004;
Ulusoy & Bishop, 2005; Liang & Jordan, 2008). Dis-
crimative techniques for estimating dynamical systems
have primarily focused on the problem of estimating
a state sequence given a noisy observation sequence
(Abbeel et al., 2005; Kim & Pavlovic, 2009). Exponen-
tial family predictive state representations (Wingate,
2007) have similar motives to our maximum causal
entropy system identification approach, but are not
trained by conditioning on the (stochastic) control pol-
icy and do not minimize the log loss over the entire
sequence of outputs.

Conclusions

In this work, we have developed a framework for dis-
criminative system identification using the principle
of maximum causal entropy. It provides robust pre-
dictive guarantees (Theorem 1) and a recursive defini-
tion that can either be solved using dynamic program-
ming in discretely-valued action-observation spaces, or
in closed form for specific types of constraint functions
and policies in continuous action-observation spaces.
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