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Abstract

Acute inflammation, a medical condition
characterized by a systemic inflammatory re-
sponse to an infection, is the leading cause of
death in non-surgical hospitalized patients.
Early diagnosis and appropriate treatment
can significantly improve the odds of sur-
vival. However, this is a challenging objec-
tive due to a very fast progression that re-
quires quick and continuous patient-specific
decisions. To aid clinicians in assessing the
benefits of different treatment strategies, we
propose the Gaussian Conditional Random
Field (GCRF) approach for predicting a pa-
tient’s response to therapy. GCRF is a data-
driven method that learns patient behavior
from historical data. Benefits of GCRF in-
clude modeling correlation among outputs,
quantifying the uncertainty of predictions,
and integrating conventional and statistical
methods. Here we provide evidence that ap-
plication of GCRF results in better predic-
tive power than alternatives when applied to
modeling patients’ responses to therapy for
acute inflammation.

1. Introduction

Planning effective personalized therapeutic strategies
for life-threatening conditions is one of the major chal-
lenges in medical practice. It is especially critical in
rapid progression medical conditions like acute inflam-
mation, a systematic inflammatory response syndrome
triggered by infection. A widely used treatment for
acute inflammation consists of broad-spectrum antibi-
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otics and/or intravenous fluids where doses are ad-
justed manually based on clinicians’ experience of the
benefit of treatment. However, such a therapeutic reg-
imen is often inadequate, as more personalized therapy
would be far more effective. Inadequate treatment re-
sults in a mortality rate of 30-35% and for every hour
that the administration of appropriate therapy is de-
layed, the mortality rate increases by about 7% (Thiel
et al., 2010). Therefore, there is a critical need for
tools that can aid clinicians in assessing the benefits of
various patient-specific treatment strategies that will
maximize the probability of treatment success.

Predictive models developed to predict a patient’s re-
sponse to the treatment can be used to assess the bene-
fits of various treatment strategies (Figure 1). To con-
struct an accurate predictive model, practitioners of-
ten rely on domain-based assumptions about patients’
behavior. Such a domain-driven predictive model
was previously used in acute inflammation treatment
(Clermont et al., 2010) where patient’s response to two
medications was modeled by a set of ordinary differ-
ential equations. An alternative would be to learn the
predictive model directly from historical data, without
making any domain-based assumptions. Such data-
driven models have been utilized as predictive models
for medical applications, including regulation of glu-
cose supply (Wang et al., 2009), an exploration of op-
timal dosing of anticancer agents (Noble et al., 2010),
and defining an optimal anesthesia (Yelneedi et al.,
2009).

To successfully implement a data-driven model in ap-
plications related to medical decisions, it is necessary
to consider some specific requirements that were not
addressed by any of the above-mentioned approaches.
Before a data-driven model is accepted by the medical
community, it is imperative to quantify the uncertainty
of its predictions. The uncertainty in predictions gives
clinicians sufficient confidence to put the new method
into practice. Also, the predictive model has to be able
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Figure 1. Predictive model for assisting clinician decisions.

to make accurate predictions of the future patient’s
behavior not only just one step ahead but also several
steps ahead in order to give clinicians opportunity to
fully assess the therapy benefit.

To meet clinician’s requirements, we propose the Gaus-
sian Conditional Random Field (GCRF) approach for
predicting a patient’s response to therapy. As in (Cler-
mont et al., 2010), all evaluations in this work are
performed on virtual patients generated by a math-
ematical model that emulates inflammatory response.
Our results show significant improvement in predic-
tion accuracy and uncertainty estimations comparing
to Gaussian process (GP) and linear autoregressive ex-
ogenous model (ARX).

2. Virtual Patient Model

To significantly reduce the chance of a clinical failure
and to save on the costs of clinical trials, biomedi-
cal researchers use computer simulations of body pro-
cesses (often called virtual patients) to perform pre-
liminary tests of hypotheses before they prove them
in real patient studies. Virtual patients are generated
using a carefully determined mathematical model to
simulate the process of interest. A significant advan-
tage of having a virtual patient model for experiments
is the possibility of testing different approaches on the
same virtual patient and comparing the outcomes. We
will use the mathematical model for inflammatory re-
sponse recently proposed in (Clermont et al., 2010)
that is capable of simulating:

• an evolution of a bacterial pathogen population
(P ) that initiates the cascade of inflammation,

• dynamics of pro-inflammatory mediators (N),

• markers of tissue damage/dysfunction (D),

• anti-inflammatory mediators evolution (CA),

which are controlled by doses of pro-inflammatory
(PIDOSE) and anti-inflammatory (AIDOSE) thera-
pies. This mathematical model is based on the system
of ordinary differential equations (ODE)

dP

dt
= kpg

(
1− P

P∞

)
− kpmsmP

µm + kmpP
−

−kpnf(N)P, (1)

dN

dt
=

snrR

µnr +R
− µN + PIDOSE(t), (2)

dD

dt
=

kdnf(N)6

x6dn + f(N)6
− µdD, (3)

dCA

dt
= sc +

kcnf(N + kcndD)

1 + f(N + kcndD)
− µcCA+

+AIDOSE(t), (4)

where

R = f(knpP + knnN + kndD), f(x) =
x

1 +
(

CA
c∞

)2 . (5)

All variables used in the mathematical model except
patient state [P N D CA] are parameters with
valid ranges specified in (Clermont et al., 2010). Al-
though conceptual, ODE is capable of modeling the
complex effect of pathogen (P ) on the patient. An
increase of pathogen level P leads to the series of pos-
itive and negative feedback reactions that are all suc-
cessfully modeled by ODE. In particular, an increase
of P leads to the development of a pro-inflammatory
response, which causes an increase of N in (2) and to
the development of tissue damage, which causes an in-
crease of D in (3). Equation (1) simulates a positive
effect of inflammation where an increase of N reduces
level of pathogen P . However, (3) simulates a negative
effect of inflammation where an increase of N further
damages tissue causing rapid increase of D. An in-
crease of D mobilizes a negative feedback in (4), or
anti-inflammatory response (CA), which lowers level
of N and inhibits damage to tissue (decrease of D)
(Clermont et al., 2010). The strength of positive and
negative feedbacks depends on the parameter values
in ODE. By varying parameter values we can simulate
variability among patients.

Variability in the population of virtual patients is ob-
tained by random initialization of three parameters in
ODE kpg, kcn, and knd and by random initialization
of the initial conditions P0 and CA0 from uniform
distribution on valid ranges (kpg ∈ [0.3, 0.6], kcn ∈
[0.03, 0.05], knd ∈ [0.015, 0.025], P0 ∈ [0, 1], CA0 ∈
[0.0938, 0.1563]). All other parameters were fixed to
referent values as in (Clermont et al., 2010) except
kcnd that covaries with kcn and knp that covaries with
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knd (Clermont et al., 2010). In all of the simulations,
t is an hourly step that starts from t = 0 when patient
state and parameters are initialized. Then, patient
state evolves according to ODE through the simula-
tion time of 168 hours (one week).

3. Predictive Model

Virtual patient state is represented by the four outputs
P , N , D, and CA. To predict four-dimensional state
using ARX model that we proposed in (Radosavljevic
et al., 2012) we split the predictive model into four sub-
models. Each of submodels was responsible for predic-
tion of one of the outputs P , N , D, and CA, keeping
the same set of inputs for each of the sub-models. If
we denote st and ut to represent patient’s state and
control signal (medication doses) at time point t re-
spectively, it can be written

st = (Pt, Nt, Dt, CAt)
T
, (6)

ut = (AIDOSEt, P IDOSEt)
T . (7)

In the ARX representation, the output of one sub-
model yt ∈ st at time step t depends on the delayed
outputs and the exogenous control inputs u as

yt = f(st−1, ..., st−ny
,ut−1, ...,ut−nu

) + ε (8)

where f denotes a function and ε is noise term. As
we can see from (8), output yt depends on the input
vector xt = [st−1, ..., st−ny

,ut−1, ...,ut−nu
]T , where ny

and nu are delays for state and control signals respec-
tively. Assuming that control signal is known up to
time t, the goal is to predict the output of the sys-
tem T steps ahead, i.e., we need to find the predictive
distribution of yt+p, p = 1 . . . T . Multiple-step-ahead
predictions of a system modeled by (8) can be achieved
by iteratively making repeated one-step-ahead predic-
tions, up to the desired horizon T . Disadvantage of
this method is that it predicts outputs independently,
not taking into account temporal correlation among
outputs, which decreases accuracy due to error prop-
agation. Thus, we developed Gaussian Conditional
Random Fields as predictive model, which is capa-
ble of modeling correlations among outputs over the
horizon T .

3.1. Gaussian Conditional Random Fields

Gaussian conditional random fields are developed
based on idea of Continuous conditional random
fields(CCRF) that are used to model conditional dis-
tribution P (y|X) over all outputs y given all inputs
X (Qin et al., 2008), as

P (y|X) =
1

Z(X,α,β)
exp (φ(y, X,α,β)), (9)

where the term in the exponent φ(y, X,α,β), and nor-
malization constant Z(X,α,β) are defined as

φ(y, X,α,β) =

N∑
i=1

A(α, yi, X) +
∑
j∼i

I(β, yi, yj , x),

Z(X,α,β) =

∫
y

exp (φ(y, X,α,β))dy. (10)

The output yi is associated with inputs X by a
real-valued function called the association potential
A(α, yi, X), where α is a K-dimensional set of param-
eters. In general, A takes as input X, which could be
any useful combination of explanatory variables from
data set D. To model interactions between outputs
yi ∼ yj , a real valued function called the interaction
potential I(β, yi, yj , X) is used, where β is an L di-
mensional set of parameters.

In CCRF applications, A and I are often conveniently
defined as linear combinations of a set of feature func-
tions f and g in terms of α and β (Lafferty & Pereira,
2001),

A(α, yi, X) =

K∑
k=1

αkfk(yi, X),

I(β, yi, yj , x) =

L∑
l=1

βlgl(yi, yj , X).

(11)

The use of feature functions is convenient because it
allows modeling of arbitrary relationships between in-
puts and outputs. In this way, any potentially relevant
feature function could be included to the model and its
degree of relevance would be determined automatically
by the learning algorithm.

3.1.1. Feature Functions

Construction of appropriate feature functions in CRF
is a manual process that depends on prior beliefs of a
practitioner about what features could be useful. The
choice of features is often constrained to reduce the
complexity of learning and inference from CRF. In gen-
eral, to evaluate P (y|X) during learning and inference,
one would need to use time consuming sampling meth-
ods (Xin et al., 2009). However, if A and I are defined
as quadratic functions of y, learning and inference can
be accomplished in a computationally efficient manner
(Qin et al., 2008). Let us assume we are given K un-
structured models, Rk(X), k = 1, . . .K, that predict
single output yi taking into account X (as a special
case, only xi can be used as X). The quadratic feature
functions for the association potential can be written
as

fk(yi, X) = −(yi −Rk(X))2, k = 1, . . .K. (12)
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These feature functions follow the basic principle for
association potentials in that their values are large
when predictions and outputs are similar. To model
the correlation among outputs, we introduce the
quadratic feature functions for the interaction poten-
tial as

gl(yi, yj , X) = −S(l)
ij (yi − yj)2, l = 1, . . . L, (13)

that imposes that outputs yi and yj have similar values

if they are similar in user defined measure S
(l)
ij .

3.1.2. Gaussian Canonical Form

In this section, we show that P (y|X) for CRF model,
which uses quadratic feature functions, can be repre-
sented as a multivariate Gaussian distribution. The
resulting CRF model can be written as

P (y|X) =
1

Z
exp (−

N∑
i=1

K∑
k=1

αk(yi −Rk(X))2−

−
∑
i∼j

L∑
l=1

βlS
(l)
ij (yi − yj)2).

(14)

The exponent in (14), which we denote as E, is a
quadratic function in terms of y. Therefore, P (y|X)
can be transformed to form of Gaussian distribution
by representing E in the information form

E = −1

2
(yTQy) + yTb + const, (15)

where Q and b are canonical parameters of Gaussian
distribution. We found by matching (14) and (15)

Q = 2(Q1 +Q2), (16)

Q1ij =

{ ∑K
k=1 αk, i = j

0, i 6= j
, (17)

Q2ij =

{ ∑
k

∑L
l=1 βlS

(l)
ik , i = j

−
∑L

l=1 βlS
(l)
ik , i 6= j

, (18)

bi = 2

K∑
k=1

αkRk(x). (19)

As the resulting conditional distribution is Gaussian,
we call resulting CRF the Gaussian CRF (GCRF).

3.1.3. Learning and inference

The learning task is to choose α and β to maximize
the conditional log-likelihood,

(α̂, β̂) = arg max︸ ︷︷ ︸
α,β

L(α,β), L = logP (y|X). (20)

To have a feasible model with real valued outputs, Z
must be integrable, which is ensured by the constraint
that all elements of α and β are greater than 0. In this
setting, learning is a constrained optimization prob-
lem. To convert it to the unconstrained optimization,
we adopt a technique used in (Qin et al., 2008) that ap-
plies the exponential transformation of the parameters
to guarantee that they are positive. All parameters are
learned by the gradient-based optimization. To apply
it, we need to find the gradient of the conditional log-
likelihood.

∂P

∂αk
=− 1

2
(y − µ)T

∂Q

∂αk
(y − µ)+

(
∂b

∂αk
− µT ∂Q

∂αk
)(y − µ) +

1

2
Tr(Q−1

∂Q

∂αk
),

(21)

∂P

∂βk
= −1

2
(y + µ)T

∂Q

∂βk
(y − µ) +

1

2
Tr(Q−1

∂Q

∂βk
), (22)

µ = Q−1b. (23)

The inference task is to find the outputs y for a
given inputs X, such that the conditional probability
P (y|X) is maximized. The GCRF model is Gaussian
and, therefore, the maximum a posteriori estimate of
y is obtained as the expected value µ of the GCRF
distribution,

y∗ = arg max︸ ︷︷ ︸
y

P (y|X) = µ. (24)

Uncertainty for each output can be taken as corre-
sponding element from the diagonal of covariance ma-
trix in P (y|X).

3.2. Temporal Form of GCRF

Multiple-step-ahead predictions over horizon T can be
achieved by GCRF defined as

P (yT |X) =
1

Z
exp (−

T∑
p=1

K∑
k=1

αk,p(yt+p −Rk,p(X))2−

−
T∑

p=2

βl(yt+p − yt+p−1)2),

(25)

where we use separate parameters αk,p for each un-
structured predictor Rk,p(X) at each time step over
the horizon. Interaction potential from (25) is defined
to impose fair assumption that patient state is not go-
ing to dramatically change between two consecutive
time steps. Model parameters are learned on N hori-
zons each of length T . To make model feasible and to
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provide good estimate of uncertainty we defined pa-
rameters α and β as

αk,p =
eak,p

σ2
k,1

, β = eb, (26)

where σ2
k,1 is uncertainty of corresponding unstruc-

tured predictor for the first-step prediction. To have
model completely defined we need to specify which un-
structured predictors will be used in GCRF.

3.3. Unstructured Predictors

Unstructured predictors that will be used in GCRF
are Gaussian process (non-linear) model and linear re-
gression. Both models are intended to learn function
(8). They iteratively provide predictions over horizon
T and uncertainty of the first-step prediction.

3.3.1. Gaussian Process regression

A Gaussian process(GP) is generalization of a multi-
variate Gaussian distribution over finite vector space
to a function space of infinite dimension. In usual
regression setting we have following input-output rela-
tionship

yi = f(xi) + ε, ε ∼ N(0, σ2
y). (27)

Gaussian process defines prior over functions denoted
by

f(x) ∼ GP (m(x), k(x,x′)), (28)

where m(x) is the mean function and k(x,x′) is the
kernel (covariance function) that is required to be pos-
itive definite. For finite set of data points X and the
mean function set to zero, this process defines joint
distribution

p(f |X) ∼ N(0,K), (29)

where Kij = k(xi,xj). Marginal distribution of out-
puts is

p(y|X) =

∫
p(y|f)p(f |x)df = N(y|0,C), (30)

where C = K+σ2
yIN . The joint density of the observed

outputs y and test output y∗ is given by(
y
y∗

)
= N

(
0,

[
C k∗
kT
∗ c∗

])
. (31)

Therefore, posterior predictive density is calculated as

p(y∗|x∗,X,y) = N(µ∗, σ
2
∗), (32)

µ∗ = kT
∗ C
−1y, (33)

σ2
∗ = c∗ − kT

∗ C
−1k∗. (34)

In our implementation, we use squared exponential
kernel defined as

k(x,x′) = σ2
f exp(−1

2
(x− x′)TM(x− x′)), (35)

where σ2
f controls vertical scale of the function

changes. Diagonal matrix M includes scales for each
dimension of x, M = diag(m−2). All kernel parame-
ters as well as noise variance are estimated using max-
imum likelihood approach (Rasmussen, 2006).

3.3.2. Linear ARX

Linear regression form of ARX representation from (8)
is

yi = wTxi + ε, ε ∼ N(0, σ2
y), (36)

where w is unknown set of weights. The weight and
noise variance are estimated by

ŵ = XT (XTX)−1Xy, (37)

σ2
y =

(y − ŵTX)T (y − ŵTX)

N − k
, (38)

where X is matrix representation of all data available
for training; N is number of training examples; k is
length of the training example vector. Prediction and
uncertainty of the test data are found using

y∗ = ŵTx∗, (39)

σ2
∗ = σ2

y(1 + x∗(X
TX)−1 ∗ xT

∗ ). (40)

4. Experimental Results

4.1. Dataset

The critical aspect of the predictive model design is
the availability of representative training data to learn
unknown parameters. Our objective is to address a
real-life scenario in which data available for training
of the predictive model come from clinical trials done
on a small group of diverse patients observed in time.
During the data collection process, we assume that the
virtual patients are monitored and the treatment strat-
egy revised hourly. The monitoring period for each pa-
tient is assumed to last for a week (168 hours). To gen-
erate a sequence of observations for a virtual patient
we need to know model parameters, initial conditions,
and a sequence of medication doses. Initial conditions
and parameters are randomly generated following al-
lowable ranges, while dosages are chosen as follows.
For each of the virtual patients we used its own math-
ematical model as a predictive model to find the best
strategy that will lead patient to healthy state. As
such strategy is unrealistic in clinical practice, we use
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Table 1. MSE at each time stamp (up to 10 steps ahead) when predicting pathogen level P.

Model T=1 T=2 T=3 T=4 T=5 T=6 T=7 T=8 T=9 T=10

GCRF 0.0003 0.0019 0.0054 0.0107 0.0173 0.0260 0.0359 0.0464 0.0571 0.0672
ARX lag 0 0.0031 0.0119 0.0251 0.0426 0.0649 0.0915 0.1223 0.1570 0.1951 0.2365
ARX lag 1 0.0003 0.0017 0.0053 0.0123 0.0241 0.0424 0.0686 0.1038 0.1489 0.2041
ARX lag 2 0.0002 0.0016 0.0055 0.0132 0.0262 0.0454 0.0715 0.1043 0.1427 0.1848
GP lag 0 0.2143 0.1964 0.3416 0.4507 0.6237 0.7379 0.6312 0.4672 0.4017 0.4097
GP lag 1 0.0014 0.0099 0.0307 0.0677 0.1238 0.1854 0.2265 0.2427 0.2458 0.2510
GP lag 2 0.0025 0.0118 0.0328 0.0662 0.1163 0.1894 0.2946 0.4303 0.5741 0.6955

Table 2. MSE at each time stamp (up to 10 steps ahead) when predicting level of tissue damage D.

Model T=1 T=2 T=3 T=4 T=5 T=6 T=7 T=8 T=9 T=10

GCRF 0.0001 0.0009 0.0025 0.0059 0.0112 0.0179 0.0258 0.0347 0.0443 0.0535
ARX lag 0 0.0022 0.0086 0.0192 0.0340 0.0530 0.0764 0.1041 0.1362 0.1729 0.2142
ARX lag 1 0.0002 0.0009 0.0027 0.0060 0.0113 0.0189 0.0293 0.0425 0.0587 0.0780
ARX lag 2 0.0002 0.0011 0.0035 0.0081 0.0153 0.0254 0.0384 0.0542 0.0725 0.0931
GP lag 0 0.0020 0.0060 0.0108 0.0173 0.0343 0.1124 0.3595 0.7622 1.1729 1.5570
GP lag 1 0.0025 0.0244 0.1283 1.7231 10.5825 16.7864 14.8040 10.9814 15.1810 17.9929
GP lag 2 0.0042 0.0219 0.0654 0.2395 0.8997 2.6021 4.8395 5.7687 5.5865 5.2554

a more clinically realistic scenario in which for an ob-
served patient’s state at time point k, the doses at k are
reasonably close to ideal. This is modeled with random
Gaussian noise added to AIDOSE and PIDOSE val-
ues found by the ideal strategy. We generated a small,
well-balanced set (equal number of septic, aseptic and
healthy patients) of 18 virtual patients (Radosavljevic
et al., 2012) with week-long hourly observations and
treatment adjustments. To evaluate prediction mod-
els we generated a test population of 35 patients with
hourly observations and treatment adjustments for one
week.

4.2. ARX and GP Models

We trained three linear ARX and three GP models
with lags 0, 1, and 2 for each of four GCRF submod-
els in which they are used as unstructured predictors.
Each GCRF submodel was trained to predict T = 10
steps ahead in the future.

4.3. Evaluation Measures

To compare models with respect to accuracy we use
the standard mean squared error (MSE) measure.
In addition, we also use a the average negative log-
predictive density (NLPD) (Quiñonero Candela et al.,
2006) to estimate quality of uncertainty predictions.

The average NLPD is defined as

NLPD =
1

N

N∑
i=1

(
(yi − yi∗)2

2σ2
i∗

+ log σi∗). (41)

NLPD is sensitive to the quality of prediction and un-
certainty estimation and it penalizes both over and un-
der confident predictions. Smaller values of NLPD cor-
respond to better quality of the estimates. For given
yi∗, NLPD reaches minimum for σ2

i∗ = (yi − yi∗)2.

4.4. Results

We compared MSE of each of the unstructured predic-
tors and GCRF at each time point p = 1, . . . 10. Pre-
dictions of unstructured predictors are obtained recur-
sively. Although we predict all four states, we present
results when predicting pathogen level P and tissue
damage D as these two states are important for deter-
mining treatment strategy. MSEs when predicting P
are presented at Table 1, while MSEs when predict-
ing D are presented at Table 2. For short horizons,
GCRF predictions are either more accurate or compa-
rable to unstructured predictions. For long horizons,
GCRF predictions of P are much more accurate than
unstructured predictions, while predictions of D are
comparable to unstructured ones.

In addition, we compared NLPD values of GCRF and
GP with lag 2 (GP naturally provides an uncertainty
estimate). NLPD results are presented in Tables 3
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Table 3. Average NLPD for each time stamp (up to 10 steps ahead) when predicting pathogen level P.

Model T=1 T=2 T=3 T=4 T=5 T=6 T=7 T=8 T=9 T=10

GCRF -4.6 -3.5 -2.8 -2.4 -2.1 -1.8 -1.6 -1.4 -1.3 -1.3
GP lag 2 -3.9 0.0 9.6 33.3 58.6 81.5 119.9 172.3 235.5 307.7

Table 4. Average NLPD for each time stamp (up to 10 steps ahead) when predicting level of tissue damage D.

Model T=1 T=2 T=3 T=4 T=5 T=6 T=7 T=8 T=9 T=10

GCRF -4.0 -1.8 -2.8 -2.1 -1.5 -1.0 -0.4 0.2 0.8 1.2
GP lag 2 0.5 25.0 173.2 289.0 637.7 950.2 1549.3 2187.6 3146.6 4351.3

and 4. NLPD of GCRF is much better than NLPD
of GP. The large values of NLPD for GP are due to
over-confident estimation of uncertainty (the proper
propagation of uncertainty will be addressed in future
work). This shows one more strength of GCRF as it
achieves good quality of predictions even when com-
bining low quality predictors. To get better insight to
the quality of GCRF predictions, we compare GCRF
NLPD to the minimal NLPD for given GCRF predic-
tion. Minimal NLPD when predicting P ranges from
-5.9 to -4, while GCRF NLPD ranges from -4.6 to -
1.3 (Table 3). The larger deviation of NLPD from
minimal value for longer prediction horizons may be
explained by conservative (under-confident) estimate
of uncertainty (Figure 2a). Minimal NLPD when pre-
dicting D ranges from -6.4 to -2.7. At the same time,
GCRF NLPD ranges from -4 to 1.2. The NLPD devi-
ation from minimal values might be described in over-
confident predictions (Figure 2b). In Figure 2 we pre-
sented unstructured and GCRF predictions for a vir-
tual patient observed over three hours. GCRF predic-
tions are accompanied with an uncertainty estimate.

5. Conclusion and Future Work

We presented the GCRF model for predicting patient’s
response in acute inflammation treatment. We showed
that, along with accurate prediction, GCRF also pro-
vides a reasonable measure of uncertainty. In future
work we plan to incorporate GP models with prop-
agation of uncertainty (Kocijan et al., 2004) and to
expand the GCRF model to deal with partially observ-
able data that are commonly found in clinical practice.
Finally, our work in progress is aimed to use GCRF in
model predictive control setup in order to suggest op-
timal therapy.
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