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CEA, LIST, 91191 Gif-sur-Yvette CEDEX, France
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Abstract

Reverse engineering of gene regulatory net-
works remains a central challenge in com-
putational systems biology, despite recent
advances facilitated by benchmark in-silico
challenges that have aided in calibrating their
performance. A number of approaches using
either perturbation (knock-out) or wild-type
time series data have appeared in the litera-
ture addressing this problem, with the latter
employing linear temporal models. Nonlin-
ear dynamical models are particularly appro-
priate for this inference task given the gen-
eration mechanism of the time series data.
In this study, we introduce a novel nonlin-
ear autoregressive model based on operator-
valued kernels that simultaneously learns the
model parameters, as well as the network
structure. A flexible boosting algorithm
(OKVAR-Boost) that shares features from
L2-boosting and randomization-based algo-
rithms is developed to perform the tasks of
parameter learning and network inference for
the proposed model. Specifically, at each
boosting iteration, a regularized operator-
valued kernel based vector autoregressive
model (OKVAR) is trained on a random sub-
network. The final model consists of an en-
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semble of such models. The empirical estima-
tion of the ensemble model’s Jacobian matrix
provides an estimation of the network struc-
ture. The performance of the proposed algo-
rithm is evaluated on a number of benchmark
data sets from the DREAM3 challenge. The
high quality results obtained strongly indi-
cate that it outperforms existing approaches.

1. Introduction

Recent advances in high throughput technologies have
facilitated the simultaneous study of components of
complex biological systems. Hence, molecular biolo-
gists are able to measure the expression levels of the
entire genome and a good portion of the proteome and
metabolome under different conditions and thus gain
insight on how organisms respond to their environ-
ment. For this reason, reconstruction of gene regu-
latory networks (GRN) from expression data has be-
come a canonical problem in computational system bi-
ology (Lawrence et al, 2010). A diverse suite of math-
ematical tools has been developed and used to infer
gene regulatory interactions from spatial and tempo-
ral high-throughput gene expression data (see Bansal
et al., 2007; Markowetz and Spang, 2007 and refer-
ences therein). Data from time-course gene expression
experiments have the potential to reveal regulatory in-
teractions as they are induced over time. A number of
methods have been employed for this task, including
dynamic Bayesian networks (Yu et al., 2004; Morris-
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sey et al., 2010), Granger causality models (see Sho-
jaie and Michailidis, 2010b and references therein), and
state-space models (Perrin et al., 2003). The first set
of methods are computationally very demanding, while
the latter two employ linear dynamics, hence limiting
their appeal. Other approaches are based on assump-
tions about the parametric nature of the dynamical
model and resort to time-consuming evolutionary al-
gorithms to learn the network (Ŝırbu et al., 2010).

This study makes a number of key contributions to the
challenging problem of network inference based solely
on time course data. It introduces a powerful network
inference framework based on nonlinear autoregres-
sive modeling and Jacobian estimation. The proposed
framework is rich and flexible, employing penalized re-
gression models that coupled with randomized search
algorithms and features of L2-boosting prove partic-
ularly effective as the extensive simulation results at-
test. The models employed require tuning of a number
of parameters and we introduce a novel and generally
applicable strategy that combines bootstrapping with
stability selection to achieve this goal.

2. Non linear autoregressive models
and network inference

Let xt ∈ Rp denote the observed state of a GRN com-
prising of p genes, with S = {1, · · · , p}. We assume
that a first-order stationary model is adequate to cap-
ture the temporal evolution of the network state, which
can exhibit nonlinear dynamics captured by a function
H : Rp → Rp; i.e. xt+1 = H(xt) + ut, where ut is a
noise term. The regulatory interactions amongst the
genes is captured by an adjacency matrix A, which is
the target of our inference procedure.

Note that for a linearly evolving network, A can be
directly estimated from the data. However, in our set-
ting, it can be obtained by averaging the values of the
empirical Jacobian matrix J of the function H, over
the whole set of time points. Specifically, denote by
x0, . . . ,xN−1 the observed time series of the network
state. Then, ∀(i, j) ∈ S ×S, the empirical estimate of
the Jacobian matrix of model H is given by:

J(H)ij =

N−2∑
t=0

∂H(xt)i
∂(xt)j

(1)

and an estimate of the adjacency matrix A of the net-
work is given by: Âij = g(J(H)ij) where g is a thresh-
olding function. Note that in the presence of sufficient
number of time points (N >> p) one can use the above
posited model directly to obtain an estimate of A, pro-
vided that a good functional form of H is selected.

However, the presence of more genes than time points
makes the problem more challenging, which together
with the absence of an obvious candidate functional
form for H make a nonparametric approach an attrac-
tive option. Such an approach is greatly facilitated by
adopting an ensemble methodology, where H is built
as a linear combination of nonlinear vector autoregres-
sive base models defined over overlapping subsets of
genes (e.g. subnetworks). Let M be the number of
subnetworks and Sm ⊂ S (m = 1, . . . ,M) be the sub-
set of genes that constitute the mth subnetwork. Each
subnetwork has the same size k. We assume that H
can be written as a linear combination of M autore-
gressive functions of the form h : Rp → Rp such that:

x̂t+1 = H(xt) =

M∑
m=1

ρmh(xt;Sm) (2)

The paramater set Sm defines the subspace of Rp

where h operates. This component-wise subnetwork
approach is intended to overcome the intractability of
searching in high-dimensional spaces and to facilitate
model estimation. In our framework, subnetworks do
not have any specific biological meaning and are al-
lowed to overlap.

Efficient ways to build an ensemble of models include
bagging, boosting and randomization-based methods
such as random forests (Dietterich, 2000; Friedman
et al., 2001). The latter two approaches have been
empirically shown to perform very well in classifica-
tion and regression problems. In this study, we em-
ploy an L2-boosting type algorithm suitable for re-
gression problems (Friedman et al., 2001; Bühlmann
and Yu, 2003) enhanced with a randomization compo-
nent where we select a subnetwork at each iteration.
The algorithm sequentially builds a set of predictive
models by fitting at each iteration the residuals of the
previous predictive model. Early-stopping rules devel-
oped to avoid overfitting improve the performance of
this algorithm.

Next, we discuss a novel class of base models.

3. A new base model

The ensemble learner is a linear combination ofM base
models denoted by h (Eq. 2). Even though h works
on a subspace of Rp defined by Sm, for the sake of sim-
plicity we present here a base model h : Rp → Rp that
works with the whole set of genes, e.g. in the whole
space Rp. Here, we introduce a novel family of non-
parametric vector autoregressive models called OK-
VAR (Operator-valued-Kernel-based Vector AutoRe-
gressive) within the framework of Reproducing Kernel
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Hilbert Space (RKHS) theory for vector-valued func-
tions. Operator-valued kernel based models have been
previously used for multitask learning problems (Mic-
chelli and Pontil, 2005), functional regression (Kadri
et al., 2010) and link prediction (Brouard et al., 2011).

OKVAR models generalize kernel-based methods ini-
tially designed for scalar-valued outputs, such as ker-
nel ridge regression, elastic net and support vec-
tor machines, to vector-valued outputs. An opera-
tor (matrix)-valued kernel1, whose properties can be
found in (Senkene and Tempel’man, 1973), takes into
account the similarity between two vectors of Rp in
a much richer way than a scalar-valued kernel, as
shown next. Let x0, . . . ,xN−1 be the observed net-
work states. Model h is built on the observation pairs
(x0,x1), . . . , (xN−2,xN−1) and defined as

h(xt;S) =

N−2∑
k=0

K(xk,xt).ck (3)

where K(·, ·) is an operator-valued kernel and each ck
(k ∈ {0, . . . , N − 2}) is a vector of dimension p. In the
following, we will denote by C = (ck,i)k,i ∈ MN−1,p,
the matrix composed of the N − 1 row vectors cTk of
dimension p.

In this work, we define a novel matrix-valued kernel
built on the Hadamard product of a decomposable ker-
nel and a transformable kernel previously introduced
in Caponnetto et al., 2008 : ∀(x, z) ∈ R2p,

K(x, z)ij = bij exp
(
−γ0||x− z||2

)
. exp

(
−γ1(xi − zj)2

)
.

(4)
K depends on a matrix hyperparameter B that
must be a positive semi-definite matrix. The term
exp

(
−γ0||x− z||2

)
is a classical Gaussian kernel that

measures how a pair of states (x, z) are close. More
interestingly, the term exp

(
−γ1(xi − zj)2

)
measures

how close coordinate i of state x and coordinate j of
state z are, for any given pair of states (x, z).One great
advantage of such a kernel is that it includes a term
that reflects the comparison of all coordinate pairs of
the two network states and does not reduce them to
a single number. The matrix B serves as a mask, im-
posing the zeros. When bij is zero, the i-th coordinate
of x and the j-th coordinate of z do not interact and
do not play a role in the output of the model.

In other words, for a given gene i ∈ S, the output of

1As output space is Rp, the operator is a linear appli-
cation on vectors of Rp and thus a matrix

the model writes as follows:

h(xt;S)i =

N−2∑
k=0

(K(xk,xt).ck)i

=

p∑
j=1

bij

(
N−2∑
k=0

exp
(
−γ0||xk − xt||2 − γ1(xki − xtj)2

)
ckj

)

=

p∑
j=1

bijfij(xt) (5)

Eq. 5 shows that the expression level of gene i
at time t + 1 is modeled by a linear combination
of nonlinear terms fij(xt) that share parameter
C. The function fij itself is a nonparamet-
ric function built from training data. fij(y) =∑N−2

k=0 exp
(
−γ0||xk − y||2

)
exp

(
−γ1(xki − yj)2

)
ckj .

The function fij expresses the role of the regulator j
on gene i. If bij equals 0, then gene j does not regulate
gene i, according to the model. Matrices B and C
need to be learned from the available training data.
If B is fixed, C can be estimated using penalized
least squares minimization as in (Brouard et al.,
2011). However, learning B and C simultaneously
is more challenging, since it involves a non-convex
optimization problem. We propose here to define B as
the Laplacian of an undirected graph represented by
an adjacency matrix W in order to ensure the positive
semi-definiteness of B. Then, learning B reduces to
learn W . In this work, we decouple the learning of W
and C by first estimating W and then C.

Figure 1. General scheme of OKVAR-Boost. The mth

learner is run on the residuals of the global model on a
random subset of time-series, denoted Sm.

4. OKVAR-Boost

The proposed algorithm is called OKVAR-Boost, since
H models the temporal evolution between network
states xt with an L2-boosting approach. As seen
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in Algorithm 1 and illustrated in Figure 1, it gen-
erates Hm(xt), an estimate of xt+1 at iteration m,
and updates this estimate in a while-loop until an
early-stopping criterion is met, or until the prespec-
ified maximum number of iterations M is reached. In
the OKVAR-Boost loop, H0(xt) is initialized with the
mean values of the genes across the time points. The
steps for estimating H in a subsequent iteration m

are as follows: Step 1 computes the residuals u
(m)
t+1 for

time points t ∈ {0, . . . , N −2}. Computing the residu-
als in this step confers OKVAR-Boost its L2-boosting
nature. In Step 2, an early-stopping decision is made
based on the comparison between the norms of the
residuals and a pre-specified stopping criterion ε. If
the norms for all dimensions (genes) are less than ε,
the algorithm exits the loop. In Step 3, a random sub-
set Sm of size k is chosen among the genes in S, whose
norm exceeds ε. This step constitutes the random-
ization component of the algorithm. Step 4 uses
the current residuals in the subspace to estimate the
interaction matrix Wm and parameters C(m). Subse-
quently, ρm is optimized through a line search. The
mth boosting model Hm(xt) is updated in Step 5 with
the current Wm, C(m), and ρm estimates. If the pre-
specified number of iterations M has not been reached,
the algorithm loops back to Step 1. Otherwise, it ex-
its the loop and estimates the adjacency matrix Â by
computing and thresholding the Jacobian matrix.

We next delineate how the interaction matrix Wm and
model parameters C(m) and ρm are estimated from
residuals in Step 4.

Combining features of random forests and boosting
algorithms gave robust results in a previous study
(Geurts et al., 2007). We utilize this approach and
select, at each iteration m (Step 3) a random subset of
genes denoted Sm ⊂ S. Then, in (Step 4), we use par-
tial correlation estimation, as a weak graph-learner,
on Sm to increase the robustness of the algorithm and
reinforce its ability to focus on subspaces. Based on
the matrix Wm resulting from this test, we define Bm

as the Laplacian of Wm.

5. Autoregression using OKVAR

At each iteration m, an OKVAR model such as pre-
viously described in Eq. 3 is defined to work in the k
dimensional subspace associated with the subset Sm.
Denote by P (m) the p × p diagonal matrix defined as

follows: p
(m)
ii = 1 if gene i belongs to Sm and p

(m)
ii = 0,

otherwise. Formally, hm = h(·; {Sm,Wm, C
(m)}) has

to be learnt from ũ
(m)
t = P (m)u

(m)
t instead of resid-

uals u
(m)
t . Then, we only need to complete Step 4(b)

Algorithm 1 OKVAR-Boost

Inputs :
• Network states : x0, . . . ,xN−1 ∈ Rp

• Early-stopping threshold ε
Initialization :
• ∀t ∈ {0, . . . , N − 1}, H0(xt) := (x̄1, . . . , x̄p)T

• Iteration m = 0, STOP=false
while m < M and STOP=false do

Step 0: Update m← m+ 1

Step 1: Compute the residuals u
(m)
t+1 := xt+1 −

Hm−1(xt)
Step 2: STOP := true if ∀j ∈
{1, . . . , p}, ‖uj(m)‖ ≤ ε
if STOP=false then

Step 3: Select Sm, a random subset of genes
of size k ≤ p
Step 4: (a) Estimate the interaction matrix

Wm ∈ {0, 1}k×k from u
(m)
1 , . . . ,u

(m)
N and com-

pute Bm as the Laplacian of Wm, (b) estimate
the parameters Cm and (c) estimate ρm by a
line search.
Step 5: Update the mth boost-
ing model: Hm(xt) := Hm−1(xt) +
ρmh(xt; {Sm,Wm, Cm})

end if
end while
mstop := m
Compute the Jacobian matrix Jmstop

of Hmstop

across time points, and threshold to get the final
adjacency matrix Â.

by learning parameters C(m). This estimation can be
realized via the functional estimation of hm within the
framework of regularization theory, e.g. the minimiza-
tion of a cost function comprising of the empirical
square loss and the square `2 norm of the function
hm which imposes smoothness to the model. More-
over, our aim is twofold: we do not only want to
get a final model H that fits the data well and pre-
dicts successfully future time points, but we also want
to extract the underlying regulatory matrix from the
model: therefore, the cost function to be minimized
must also reflect this goal. Following Subsection 2,
the adjacency matrix of the network A is estimated
by the empirical Jacobian J(H), expressed in terms
of the empirical Jacobian J (m) of the base models
hm (m = 1, . . . ,mstop) using the observed data (not

residuals): ∀(i, j) ∈ S × S, Jij =
∑mstop

m=1 ρmJ
(m)
ij =

1
N−1

∑mstop

m=1 ρm
∑N−2

t=0 J
(m)
ij (t) where for a given time

point t, the coefficients of the Jacobian, J
(m)
ij (t), are
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given by:

J
(m)
ij (t) =

∂hm(xt)i
∂(xt)j

=

N−2∑
k=0

p∑
`=1

c
(m)
k,`

∂K(m)(xk,xt)i`
∂(xt)j

Whatever is K(m), when it is fixed, controlling the
sparsity of the coefficients of C(m) will impact the
sparsity of J (m) and will avoid too many false pos-
itive edges. Therefore, we add to the cost function
previously discussed, an `1 term to ensure the sparsity
of C(m):

L(C(m)) =

N−2∑
t=0

∥∥∥ũ(m)
t+1 − hm(ũ

(m)
t )

∥∥∥2+λ2‖hm‖2H+λ1‖C(m)‖1

(6)

The respective norms can be computed as follows:

‖hm‖2H =
∑N−2

i,j=1 c
(m)
i

T
K(m)(ũ

(m)
j , ũ

(m)
i )c

(m)
j

and ‖C(m)‖1 =
∑N−2

t=0

∑
j∈Sm |c

(m)
tj |. This regulariza-

tion model combining `1 and `2 penalties is known as
the elastic net model (Friedman et al., 2001) and
it has been shown that not only does it achieve spar-
sity like lasso penalized models, but also encourages
grouping effects, which might be relevant in our case
to highlight possible joint regulation among network
variables (genes). We used a projected scaled subgra-
dient method (Schmidt et al., 2009) to minimize the
cost function.

6. Numerical results

6.1. DREAM3 dataset

The performance of OKVAR-Boost was evaluated on
a number of GRNs obtained from DREAM3 in-silico
challenges. The DREAM (Dialogue for Reverse Engi-
neering Assessments and Methods) project (Marbach
et al., 2009) is a scientific consortium that organizes
challenges in computational biology. It aims to un-
derstand the strengths and the limitations of various
algorithms to reconstruct cellular networks, especially
gene regulatory networks, from high-throughput data
(Stolovitzky et al., 2007). Specifically, 4 and 46 time
series consisting of 21 time points corresponding re-
spectively to size-10 and size-100 networks for E.coli
(2) and Yeast (3) were selected. The data were gener-
ated by simulating from a thermodynamic model for
gene expression to which Gaussian noise was added.
The multiple time series correspond to different ran-
dom initial conditions for the thermodynamic model
(Prill et al., 2010). The topology of the networks is ex-
tracted from the currently accepted E. coli and S. cere-
visiae GRNs, and exhibits varying patterns of sparsity
and topological structure.

6.2. Hyperparameters and model selection

To select hyperparameters λ1 and λ2, we consider sta-
bility which is a finite sample criterion that has been
applied in various settings, such as clustering or feature
selection in regression (Meinshausen and Bühlmann,
2010). The idea underlying stability-driven selection is
to choose the hyperparameters that provide the most
stable results when randomly subsampling the data.
We propose a new selection criterion, called Block-
stability based on the block-bootstrap. Block boot-
strap re-samples time series by consecutive blocks en-
suring that each block of observations in a station-
ary time series can be treated as exchangeable (Politis
et al., 1999). For the DREAM data, we chose a length
of 12 and 15 time points for size 10 and size 100, respec-
tively while the number of pairs of block-bootstrapped
subsamples was set to B = 20. We define the block-
instability BIS for a pair of hyperparameters (λ1, λ2)
regarding network inference based on the Jacobian as:

BIS(λ1, λ2; xN−1
0 ) =

1

B

B∑
b=1

‖ J(Hb,1)− J(Hb,2) ‖2

(7)
where Hb,1 (Hb,2) is the autoregressive model
built from the block sample (b, 1) ((b, 2)) drawn
from a single time series x0, . . . ,xN−1. When
L time series are available, the criterion be-
comes: BIS(λ1, λ2; xN−1,1

0 , . . . ,xN−1,L
0 ) =

1
L

∑L
`=1BIS(λ1, λ2; xN−1,`

0 ). In the experiments,
hyperparameters λ1 and λ2 were chosen as the
minimizers of the instability criterion BIS when only
a single time series was available and BIS when
multiple ones were provided.

6.3. OKVAR-Boost with Multiple Runs

As OKVAR-Boost residuals diminish rapidly, there is
a risk that the potential regulators and their targets
may not be fully explored by the random subnetwork
procedure of the algorithm. To address this issue, the
algorithm was run nRun = 10 times and a consensus
network was built by combining the predictions from
each run. Specifically, for each pair of nodes the fre-
quency with which the edge appears over multiple runs
was calculated, thus yielding the final network predic-
tion. If the frequency was above a preset threshold the
edge was kept, otherwise discarded.

6.4. Consensus Network from Multiple Time
Series

In many instances, multiple (L) time series may be
available, either because of multiple related initial con-



Boosting an operator-valued kernel model for network inference

ditions or due to biological and/or technical repli-
cates. In this case, the procedure just needs to be
repeated accordingly and the L · nRun obtained net-
works are combined as described above to provide a
final consensus network. We set Âij = 1 if and only

if
∑L·nRun

r=1 |Â(r)
ij | ≥ fcons · L · nRun, where Â(r) is

the estimated adjacency matrix for run number r and
fcons ∈ [0, 1] is the consensus threshold level for edge
acceptance.

(a) (b)

Figure 2. Mean squared error of OKVAR-Boost model for
each gene using Ecoli2 datasets. (a) Size-10 Ecoli2 (b)
Size-100 Ecoli2. The algorithm terminated after 14 and 4
iterations respectively.

6.5. Performance Assessment

Overall, the OKVAR-Boost algorithm succeeds in fit-
ting the observed data and exhibits fast convergence.
In Figure 2, results from the Ecoli2 networks (size-
10 and 100) are presented. Note that the algorithm
is rich and flexible enough to have the mean-squared-
error for genes diminishing fast towards zero in only
5-10 iterations.

We assess the performance of our algorithm for predic-
tion of the network structure using the area under the
ROC curve (AUROC) and under the Precision-Recall
curve (AUPR) for regulation ignoring the sign (posi-
tive vs negative influence). The results given in Tables
1 and 2 show a comparison between the base learner
alone when the true B is provided for DREAM3 size-
10 networks (Table 1), boosting with multiple runs us-
ing a single time series and all the available time series.
The base learner is an elastic-net OKVAR model learnt
given the Laplacian of the true undirected graph and
applied on the whole set S of genes. The LASSO row
corresponds to a classical linear least squares regres-
sion : xt+1,i = xT

t βi, realized on each dimension (gene)
i = 1 . . . p subject to an `1 penalty on the βi parame-
ters. An edge (i, j) is assigned for each nonzero βij co-
efficient. The LASSO was run on all the available time
series and a final consensus network is built in the same
fashion as delineated in section 6.4. The AUROC and
AUPR values obtained strongly indicate that OKVAR-
Boost outperforms the LASSO and the teams that ex-
clusively used the same set of time series data in the

DREAM3 competition. The multiple-run consensus
strategy achieved superior AUROC and AUPR results
for all networks except for size-10 Yeast2. We par-
ticularly note that the OKVAR-Boost consensus runs
exhibited excellent AUPR values compared to those
obtained by teams 236 and 190.

A comparison between algorithms for size-100 net-
works (Table 2) shows that OKVAR-Boost again
clearly outperforms Team 236, the only team that ex-
clusively used time series data for the size-100 chal-
lenge. It is noticeable that AUROC values for size-100
networks still remain high and look similar to their
size-10 counterparts while AUPR values in all rows
have stayed lower than 10% except for size-100 Ecoli2.
A similar decline is also observed in the results of Team
236. It can be seen that AUPR values can be impacted
more strongly by the lower density of the size-100 net-
works, where the non-edges class severely outnumbers
the edges class, rather than the choice of algorithm.
Additionally, for such difficult tasks, the number of
available time-series may be too small to get better
AUROC and AUPR. Although there is no information
on the structure of team 236’s algorithm, its authors
responded to the post-competition DREAM3 survey
stating that their method employs Bayesian models
with an in-degree constraint (Prill et al., 2010). Team
190 (Table 1) reported in the same survey that their
method is also Bayesian with a focus on nonlinear dy-
namics and local optimization. This team did not sub-
mit predictions for the size-100 challenge.

7. Discussion

Gene regulatory inference has been cast as a feature se-
lection problem in numerous works. For linear models,
lasso penalized regression models have been effectively
used for the task (Perrin et al., 2003; Fujita et al.,
2007; Shojaie and Michailidis, 2010a). As an alterna-
tive to lasso regularization, an L2 boosting algorithm
was proposed in Anjum et al., 2009 to build a combina-
tion of linear autoregressive models that work for very
large networks. In nonlinear nonparametric modeling,
random forests and their variants, extra-trees (Huynh-
Thu et al., 2010), have recently won the DREAM5
challenge devoted to static data by solving p regres-
sion problems. Importance measures computed on the
explanatory variables (genes) provide potential regula-
tors for each of the candidate target gene. Compared
to these approaches, OKVAR-Boost shares features
with boosting and selected features of randomization-
based methods, such as the use of a random subnet-
work at each iteration. It exhibits fast convergence in
terms of mean squared error due to the flexibilty of



Boosting an operator-valued kernel model for network inference

Table 1. AUROC and AUPR for OKVAR-Boost (λ1 = 1, λ2 = 10 selected by Block-Stability), LASSO, Team 236 and
Team 190 (DREAM3 challenge) run on DREAM3 size-10 networks. OKVAR-Boost results using respectively one time
series (OKVAR-Boost (1 TS)) (Average ± Standard Deviations) and the four available time series (OKVAR-Boost) are
from consensus networks. The numbers in boldface are the maximum values of each column.

Ecoli1 Ecoli2 Yeast1 Yeast2 Yeast3
Size-10 AUROC AUPR AUROC AUPR AUROC AUPR AUROC AUPR AUROC AUPR

OKVAR + True B 0.932 0.712 0.814 0.754 0.856 0.494 0.753 0.363 0.762 0.450

OKVAR-Boost 0.665 0.272 0.629 0.466 0.663 0.256 0.607 0.312 0.594 0.358
(1 TS) ± 0.088 ± 0.081 ± 0.095 ± 0.065 ± 0.037 ± 0.022 ± 0.049 ± 0.056 ± 0.072 ± 0.099

OKVAR-Boost 0.853 0.583 0.749 0.536 0.689 0.283 0.653 0.268 0.695 0.443

LASSO 0.500 0.119 0.547 0.531 0.528 0.244 0.627 0.305 0.582 0.255

Team 236 0.621 0.197 0.650 0.378 0.646 0.194 0.438 0.236 0.488 0.239
Team 190 0.573 0.152 0.515 0.181 0.631 0.167 0.577 0.371 0.603 0.373

Table 2. AUROC and AUPR for OKVAR-Boost (λ1 = 0.001, λ2 = 0.1 selected by Block-Stability), LASSO and Team 236
(DREAM3 challenge) run on DREAM3 size-100 networks. All the results are obtained using the 46 available time series.
The numbers in boldface are the maximum values of each column.

Ecoli1 Ecoli2 Yeast1 Yeast2 Yeast3
Size-100 AUROC AUPR AUROC AUPR AUROC AUPR AUROC AUPR AUROC AUPR

OKVAR-Boost 0.718 0.036 0.772 0.107 0.729 0.042 0.650 0.073 0.643 0.069

LASSO 0.519 0.016 0.512 0.057 0.507 0.016 0.530 0.044 0.506 0.044

Team 236 0.527 0.019 0.546 0.042 0.532 0.035 0.508 0.046 0.508 0.065

the OKVAR to capture nonlinear dynamics. Further,
it uses an original and general way to extract the reg-
ulatory network through the Jacobian matrix of the
estimated nonlinear model. The control of sparsity
on the Jacobian matrix is converted into a constraint
of the parameters of each base model hm, for which
the independence matrix Wm has been obtained by a
conditional independence test. It should also be em-
phasized that prior information about the regulatory
network can be easily incorporated into the algorithm
by fixing known coefficients of the independence matri-
ces used at each iteration. OKVAR-Boost also directly
extends to additional observed time series from differ-
ent initial conditions. Although we only showed one
specific OKVAR model which is of special interest for
network inference, other kernels can be defined and be
more appropriate depending on the focus of the study.
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