STABILITY ANALYSIS AND CONTROL DESIGN
WITH IMPACTS AND FRICTION

Michael Posa
Massachusetts Institute of Technology

Collaboration with Mark Tobenkin and Russ Tedrake

ICRA Workshop on Robust Optimization-Based Control
and Planning for Legged Robots
May 16, 2016
CONTACT AND CONTROL

- Complex contact scenarios make typical control policies very brittle
- Require fast and accurate sensing of contact state
- Struggle when unexpected contact occurs
- Carefully tuned, ad-hoc approaches near contact events
CONTACT AND CONTROL

- Complex contact scenarios make typical control policies very brittle
- Require fast and accurate sensing of contact state
- Struggle when unexpected contact occurs
- Carefully tuned, ad-hoc approaches near contact events

Algorithms for finding and verifying controllers robust to contact dynamics?
WHAT MAKES CONTACT HARD?
What makes contact hard?

It's where our intuitive designs struggle
WHAT MAKES CONTACT HARD?

Good techniques for ODEs: $\dot{x}(t) = f(x(t), u(t))$

It's where our intuitive designs struggle
WHAT MAKES CONTACT HARD?

Good techniques for ODEs: $\dot{x}(t) = f(x(t), u(t))$, but...

- Discontinuities
 - $x(t)$
 - $f(x, u)$
 - Continuity of solutions w.r.t initial conditions

It's where our intuitive designs struggle
WHAT MAKES CONTACT HARD?

Good techniques for ODEs: \(\dot{x}(t) = f(x(t), u(t)) \), but...

- Discontinuities
 - \(x(t) \)
 - \(f(x, u) \)
 - Continuity of solutions w.r.t initial conditions
- Uniqueness

It's where our intuitive designs struggle
WHAT MAKES CONTACT HARD?

Good techniques for ODEs: \(\dot{x}(t) = f(x(t), u(t)) \), but...

- Discontinuities
 - \(x(t) \)
 - \(f(x, u) \)
 - Continuity of solutions w.r.t initial conditions
- Uniqueness
- Zeno Phenomena

It's where our intuitive designs struggle
Models: Dynamics, Impacts, and Friction

- Joint coordinates \(q \) and velocities \(v \)
 \[
 x = \begin{bmatrix} q \\ v \end{bmatrix}
 \]

- Rigid-body dynamics:
 \[
 H(q)\ddot{q} + C(q, \dot{q}) = Bu + J(q)^T \lambda
 \]

- Contact gap function \(\phi(q) \) and Jacobian \(J_N(q) \)
- Impulsive, inelastic impacts
 \[
 J_N(q)v^+ = 0
 \]

- "Incremental" frictional impacts [Routh 1891]
- Coulomb friction
 \[
 \lambda \in FC
 \]
VERIFICATION AND ANALYSIS

- Lyapunov functions powerful for smooth systems
 - Hybrid versions analyze every contact mode and transition
 Exponential in number of contacts [Papachristodoulou 2009]
- Instead, use Measure Differential Inclusion (MDI) framework [Moreau 1988, Stewart 2000, and others]
 - Exploit complementarity struction
 - Pose tractable SOS programs
LYAPUNOV FUNCTIONS

Capture global or regional stability properties of nonlinear systems

\[V : \mathbb{R}^n \to \mathbb{R}^+ \]
\[V(x) \geq 0 \]
\[\dot{V}(x) = \frac{\partial V}{\partial x} f(x, u) \leq 0 \]

Example: reverse-time Van der Pol oscillator

\[\dot{x}_1 = -x_2 \]
\[\dot{x}_2 = x_1 + (x_1^2 - 1)x_2 \]

[Tan and Packard]
Sums-of-squares and Lyapunov Functions

- Fundamentally questions of non-negativity
 - If $p(x)$ a polynomial, $p(x) \geq 0$ is NP-hard
- Replace with a sufficient condition
 $$p(x) = \sum_i a_i^2(x)$$

- Finding $a_i(x)$ is a convex constraint in a Semidefinite Program (SDP)* [Parillo 2000, Lasserre 2001]

 $$\begin{align*}
 \text{find} & \quad Q \succeq 0 \\
 \text{s.t.} & \quad p(x) = m(x)^T Q m(x)
 \end{align*}$$

For some basis $m(x)$ (e.g. monomials up to degree d)

*Generalization of linear programming
S-PROCEDURE

- Regional analysis for semialgebraic set \mathcal{F}
- For example, $\mathcal{F} = \{x : V(x) < \rho\}$

 $$x \in \mathcal{F} \Rightarrow p(x) \geq 0$$

- Sufficient condition:

 $$p(x) - \sigma(x)(V(x) - \rho) \geq 0$$

 $$\sigma(x) \geq 0$$

ρ-sublevel set of V in blue
PASSIVE RIMLESS WHEEL

- 5 state model
- 2 contact points
- Exhibits Zeno phenomena

Goal: verify stable region

[Posa, Tobenkin, and Tedrake (TAC 2016)], [Posa, Tobenkin, and Tedrake (HSCC 2013)]
LYAPUNOV FUNCTIONS FOR MDIS

- Measure differential inclusion modeling framework, instead of ODE
- Encompasses discontinuities and non-uniqueness

\[dq = v(t)dt \]
\[dv = \dot{v}(t)dt + (v^+(t) - v^-(t))d\eta(t) \]

- \(q(t) \) continuous and \(v(t) \) of locally bounded variation
- Dynamics from set-valued functions
 - Simulation requires selection from set
 - For verification, take permissive view

Prove
\[dV = \dot{V}(t) + (V^+(t) - V^-(t)) \leq 0 \]
for all possible scenarios
HOW TO EFFICIENTLY VERIFY $dV \leq 0$?

(q, v, λ) admissible $\Rightarrow dV(q, v, \lambda) \leq 0$
How to Efficiently Verify $dV \leq 0$?

(q, v, λ) admissible $\Rightarrow dV(q, v, \lambda) \leq 0$

$$
\dot{V} = \frac{\partial V}{\partial q} v + \frac{\partial V}{\partial v} H^{-1}(C + Bu)
$$

No contact

$$
\dot{V} = \frac{\partial V}{\partial q} v + \frac{\partial V}{\partial v} H^{-1}(C + Bu + J^T \lambda)
$$

Continuous contact

$$
V^+ - V^- = \int_0^\Lambda \frac{\partial V}{\partial v} H^{-1} J^T \lambda d\lambda
$$

Routh impact
HOW TO EFFICIENTLY VERIFY $dV \leq 0$?

(q, v, λ) admissible $\Rightarrow dV(q, v, \lambda) \leq 0$

$$\dot{V} = \frac{\partial V}{\partial q} v + \frac{\partial V}{\partial v} H^{-1} (C + Bu)$$ No contact

$$\dot{V} = \frac{\partial V}{\partial q} v + \frac{\partial V}{\partial v} H^{-1} (C + Bu + J^T \lambda)$$ Continuous contact

$$V^+ - V^- = \int_{0}^{\Lambda} \frac{\partial V}{\partial v} H^{-1} J^T \lambda d\lambda$$ Routh impact

Observation: sufficient to check

$$\frac{\partial V}{\partial q} v + \frac{\partial V}{\partial v} H^{-1} (C + Bu) \leq 0$$

$$\frac{\partial V}{\partial v} H^{-1} J^T \lambda \leq 0$$
LEVERAGING STRUCTURE

What \((q, v, \lambda)\) are admissible?
LEVERAGING STRUCTURE

What \((q, v, \lambda)\) are admissible?

- Leverage complementarity formulation
 - Non-penetration: \(\phi(q) \geq 0\)
 - Friction cone: \(\lambda \in \mathcal{FC}\)
 - Contact mode logic: \(\phi(q) > 0 \Rightarrow \lambda = 0\)
- Semialgebraic in \((q, v, \lambda)\)

\[
\begin{align*}
\phi(q) & \geq 0 \\
\lambda_N & \geq 0 \\
\phi(q)\lambda_N & = 0
\end{align*}
\]
LEVERAGING STRUCTURE

What \((q, v, \lambda)\) are admissible?

\[
\begin{align*}
\phi, \lambda_N & \geq 0 \quad \text{Non-penetration, normal force} \\
(J_N v) \lambda_N & \leq 0 \quad \text{Normal dissipation} \\
(J_f v) \lambda_f & \leq 0 \quad \text{Frictional dissipation} \\
\phi \lambda_N & = 0 \quad \text{No force at distance} \\
\mu^2 \lambda_N^2 & - \lambda_f^2 \geq 0 \quad \text{Friction cone} \\
(\mu^2 \lambda_N^2 - \lambda_f^2)(J_f v) & = 0 \quad \text{Sliding friction}
\end{align*}
\]
TRACTABLE OPTIMIZATION PROGRAM

Theorem [TAC 2016]: For m contacts, can **eliminate** normal force variables and verify contacts **independently**

- Proof exploits continuity and homogeneity in λ
- Reduced conditions:

$$\frac{\partial V}{\partial q} \nu + \frac{\partial V}{\partial v} H^{-1}(C + Bu) \leq 0 \iff \phi \geq 0$$

$$\frac{\partial V}{\partial v} H^{-1}(J_{N,i}^T + J_{f,i}^T \lambda_{f,i}) \leq 0 \iff \left\{ \begin{array}{l}
\phi \geq 0 \\
\phi_i = 0 \\
J_{N,i} \nu \leq 0 \\
(J_f \nu) \lambda_{f,i} \leq 0 \\
\mu^2 - \lambda_{f,i}^2 \leq 0 \\
(\mu^2 - \lambda_{f,i}^2) J_{f,i} \nu = 0 \end{array} \right. \quad i=1,..,n$$
Tractable Optimization Program

For n-dimensional state, m contacts, and polynomial degree d,

<table>
<thead>
<tr>
<th>Hybrid*</th>
<th>multiple Lyapunov functions</th>
<th>$\mathcal{O}(3^m)$</th>
<th>$\mathcal{O}(3^m n^d)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>MDI</td>
<td>single Lyapunov function</td>
<td>$\mathcal{O}(m^2)$</td>
<td>$\mathcal{O}(m^2 (n + 1)^d)$</td>
</tr>
</tbody>
</table>

*Exact count depends on formulation of sliding and sticking contact
CONTROL DESIGN AND VERIFICATION

- 7 state model
- 2 contact points
- 1 input
- Control design bilinear in $V(x)$ and $u(x)$
- Solve via alternating sequence of SOS programs

What is possible with a continuous feedback policy $u(x)$?

Goal: maximize stable region
CONTROL DESIGN AND VERIFICATION

- Sampled 2D slice of state space and simulate
- Verified region in blue
- Stable samples as red dots
Unsafe Region Avoidance
Discussion

- A step toward control and verification in complex contact scenarios
- Restricted to fairly simple models
 - Beyond capability of hybrid formulation
 - SOS/SDP relatively immature
 - Introduce model/terrain uncertainty at computational cost
- Preliminary work in exploiting simple models for push recovery
- Relevant publications