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Abstract. Most inpainting approaches require a good image model to
infer the unknown pixels. In this work, we directly learn a mapping from
image patches, corrupted by missing pixels, onto complete image patches.
This mapping is represented as a deep neural network that is automati-
cally trained on a large image data set. In particular, we are interested in
the question whether it is helpful to exploit the shape information of the
missing regions, i.e. the masks, which is something commonly ignored by
other approaches. In comprehensive experiments on various images, we
demonstrate that our learning-based approach is able to use this extra
information and can achieve state-of-the-art inpainting results. Further-
more, we show that training with such extra information is useful for
blind inpainting, where the exact shape of the missing region might be
uncertain, for instance due to aliasing effects.
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1 Introduction and related work

Image inpainting tries to fill-in missing parts of an image. Commonly, one can
distinguish two settings, where pixels in an image are missing:

(i) In the first setting, the goal is to manipulate an existing image. Usually,
some image details or larger regions of a given image should be removed.
The resulting hole must be filled in to create a plausible complete image.
For instance, consider an image with two persons, where one person should
disappear. Then the task of image inpainting is to fill-in the resulting (pos-
sibly large) hole with some background textures or patterns. The goal is not
to recover a true image but one that looks realistic. Many successful meth-
ods (some based on texture synthesis [8]) have been proposed in the past,
for instance [7, 17, 5, 26, 13] and references therein. These ideas can be also
generalized to video inpainting [23].

(ii) The second setting considers an image that is locally corrupted, for example
by super-imposed text or scratches. In this case, the missing regions are
small but possibly all over the image. The goal is to recover an image which
is as close as possible to the true image. Also for this setting many good
approaches exist which will be discussed in the following.

Both settings are relevant for image processing, however, in this paper we solely
consider the second setting. The existing methods for the second setting can be
categorized into two groups:
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(i) Many classical approaches are diffusion-based methods that propagate the
local information, such as edges and gradients, from the boundary to the
missing pixels, see e.g. [16, 2, 4].

(ii) The second class is based on sparse representations using dictionaries [9, 14,
11]. General purpose image priors based on Markov random fields (MRFs)
can be learned on image databases [18, 20]. These have been also successfully
applied to inpainting.

While the existing methods lead to impressive image reconstruction results, none
of them is exploiting the shape of the mask for inpainting. The (binary) mask has
the same size as the image and is 1 for pixels which are missing in the corrupted
image and 0 for all other pixels. In this paper we show how this additional
information can be utilized to obtain better image reconstruction results. For this
we choose a task-specific learning approach employing deep neural networks since
they have recently been successfully applied to several other image restoration
problems, e.g. to image denoising [3] or to image deblurring [21]. Closest to
our work is [25] who apply a deep learning approach to both denoising and
inpainting. They are also able to do blind inpainting (as we do in Sec. 3.4), but
do not use the mask information.

In a nutshell, the contributions of the present paper are as follows:

– We show that a mask-specific inpainting method can be learned with neural
networks, which leads to better results.

– We show that it is relevant to train the inpainting method with the correct
masks.

– We show that by training an inpainting method for masks generated with
certain fonts, it is possible to blindly inpaint an image, i.e. without knowing
the locations of the missing pixels.

2 Learning mask-specific inpainting methods

The overall idea is to train a neural network to map corrupted image patches
(=rectangular parts from the image) to their uncorrupted counterparts. This
mapping is applied to all patches of a corrupted image. The recovered patches
are averaged at their overlapping parts to obtain the reconstructed image. In
case the true mask for the whole picture is given, the known pixels from the
input image are directly copied to the reconstructed image. Note that the input
patches are usually larger than the output patches, which matches the intuition
that the missing pixels can be recovered by considering some large enough area
around them. In the following we briefly recall multi-layer perceptrons (MLPs)
and explain the training procedure.

2.1 Multi-layer perceptrons
A multi-layer perceptron is a nonlinear function f that maps input vectors x
onto output vectors y. We follow the notation of [3]. An MLP with two hidden
layers can be written as

f(x) = b3 +W3 tanh(b2 +W2 tanh(b1 +W1x)) (1)
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Fig. 1: PSNR for 10 test images for
an MLP that takes only the corrupted
patch as input (blue line) and an
MLP that additionally has the mask-
ing patch as input (green line).
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our results trained on various angles

Fig. 2: Performance of the MLP
trained on different angles compared
against the method by [14]. The com-
parison against [20] looks similar. The
performance of the neural net depends
on the orientation of the bars and is
best for the orientation on which the
neural net was trained on.

(from Eq. (1) in [3]) where vectors b1, b2, b3 and the matrices W1,W2,W3 are the
parameters of the MLP. More generally we denote the architecture of an MLP by
some integer tuple: e.g. a (256, 1024, 1024, 64)-MLP has a 256-dimensional input
layer, two 1024-dimensional hidden layers and a 64-dimensional output layer.

2.2 Mask-specific training

To adjust the parameters of the MLP, we need training data that consists of
pairs of input patches x and output patches y. Using these we can automatically
learn the mapping using the backpropagation algorithm [19, 12]. To speed up
convergence we use the ADADELTA method [27] that automatically adapts
parameter-specific learning rates (fixing the decay rate ρ = 0.95, the conditioning
constant ε = 10−6, and batch size to 128).

To generate large amounts of training pairs we randomly select image patches
from an image database (we used imagenet [6] for training). These extracted
patches are the uncorrupted output patches.

To corrupt those patches we utilize the knowledge about the masks. For
instance for super-imposed text we corrupt the output patches by adding random
text of the same font and size, if that information is available. This allows us to
create input patches with corruptions that are similar to the corruptions in the
test image.

2.3 Training with and w/o mask as input patch

Many inpainting algorithms require the exact locations of the missing pixels.
For this reason we consider two versions of our approach: the first considers
only the corrupted patch as the input. Note that the corrupted patch does not
always contain the information which pixels are missing (e.g. for blind inpainting,
see Sec. 3.4). Version two of our approach requires the corrupted patch and
additionally the masking patch as the input.
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To show that feeding the masking patch additionally helps, we performed a
comparison of the two approaches on 10 test images (randomly selected from the
Berkeley segmentation dataset [15]) with super-imposed text. Fig. 1 shows the
results of two neural nets, both with architecture (162, 512, 512, 512, 82) which
were trained for the same amount of epochs. The first MLP was trained with
the mask as an additional input, the second MLP was trained without the mask,
but with correctly corrupted patches, i.e. using the correct font and text size.
In all cases the MLP with the additional input was better. See also Fig. 3 for
example images.

(a) input image (b) trained w/o mask (c) trained with mask

Fig. 3: The performance of the neural net improves if a mask is included in the
training process. It can be seen that in image (b), artifacts, especially in the sky,
are visible.

2.4 Training with the correct and wrong masks
In this section we demonstrate the advantage that is gained through incorpo-
rating the correct mask into the learning process. For that purpose we generate
several masks which are similar. We start with a mask, showing vertical bars
of size 14 × 3 pixels. We rotate those bars repeatedly by 15 degrees. We do not
allow aliasing, but only binary masks, so each pixel in the mask which is greater
than 0 after rotation is set to 1.

We trained several MLPs with the architecture (162, 512, 512, 512, 82) using
training images generated with these different masks. For each of those angles,
also 10 test images are generated (10 randomly picked images from the Berkeley
segmentation dataset [15]).

Fig. 2 shows that the neural net performs best on the angle it was trained
on, and that the performance deteriorates quickly for other angles. The methods
by [20] and [14] perform about the same for all angles, no matter in what way
the bars are orientated. Our approach is better if the correct angle has been
considered during training time.
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3 Experiments

We always trained the MLPs on gray-scale images. To apply them to color
we applied the same MLP separately to the three color channels. To generate
training patches we used 1.8 million color images from imagenet [6], which we
converted to gray-scale. Note that in general the larger the architecture of the
neural network, the better the results, but the longer the training time until
convergence. In average the training time until convergence is 3 to 5 days.

Note that we did not have access to implementations for all competing meth-
ods. For Figs. 4, 5 and 6 we applied all algorithms that were available to us.
Furthermore, we included for Fig. 5 those methods which published results on
the “New Orleans” image in their papers. Fig. 6 shows a comparison on images
from [26].

3.1 Comparison with horizontal/vertical lines

We perform an experiment with horizontal and vertical lines painted on an
image. We used a (162, 1024, 1024, 1024, 82) architecture. As can be seen in Fig. 4,
we achieve a better PSNR than the methods by [20] and by [14]. This is especially
due to the fact that the MLP is able to inpaint the stripes on the shirt in a much
better way than the other algorithms.

input, PSNR 17.36 [1], PSNR 32.91 [20], PSNR 35.31 [14], PSNR 35.32 ours, PSNR 37.34

Fig. 4: Comparison on an image with line artifacts. Note that the chest-part of
the shirt shows fewer artifacts with our approach than it does with the other
methods.

3.2 Comparison on the New Orleans image

We compare our method against other methods on the New Orleans image, used
by [2]. For this comparison a (392, 2047, 2047, 2047, 2047, 132) architecture was
trained. Visually our approach performs better than the approaches by [5], [2],
[20], [18], [22] and by [1]. Our result looks similar to the result of [14], but we
are still able to recover more detailed information, e.g. the pole (marked with
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a green box in the corrupted image). One reason why we are better than the
second best performing method [14] might be that we are able to use larger
patch sizes. We used input patches of size 39 × 39 pixels, whereas [14] used a
dictionary with patch size 9 × 9 pixels.

Note that for this example the original image was corrupted with some text
of which the true mask is available. We used exactly this mask to corrupt images
for the training set.

3.3 Comparison against images from Xu and Sun [26]

Fig. 6 shows the results for one out of five images from [26] (Fig. 8 in their
paper). In Sec. 3.5 we show the limitations of our proposed method on one of
the other images. The neural net (with architecture (392, 2047, 2047, 2047, 132))
was trained with the given masks from [26]. On the Lena image we achieve better
results (in terms of PSNR) than all other algorithms.

3.4 Comparison for blind inpainting

With an MLP we are also able to inpaint images without the exact knowledge of
the mask while other inpainting methods do require a binary mask as an input.
Fig. 7 shows results for two images, on which random text was written with the
same font and font-size as used for the training procedure of the MLP.

Note that the text written on the image is aliased, meaning it is not binary.
Extracting a mask from such an image is rather tedious, as the optimal mask
cannot be found by just thresholding the image. However, identifying the font
and font-size is often possible and provides important information for the training
process.

Optimally we would compare against [25] who also consider a deep learning
approach to inpainting (but ignoring the mask based training). Unfortunately,
we were not able to obtain their images nor their code, so we have to postpone
this comparison for a later publication. For this reason we compare only against
the method of [20] which seems to be our closest competitor in terms of PSNR.
Since the latter method requires the mask we additionally provided it to their
method. Although our blind approach did not have access to the mask, it was
able to reconstruct a better result.

We see that our method can be used to automatically inpaint images with
super-imposed text or for automatic removing of watermarks or logos. It can
also be used to batch inpaint several images which were damaged by the same
type of corruption, without creating a mask for each corrupted image. Though
this method does not perform as well as with the mask as an input (see Sec. 2.3),
it is a good way to inpaint several images at once without the necessity of the
user to determine the pixels of an image which are corrupted.

3.5 Limitations

The proposed method performs well if the holes to be filled-in are small. If the
holes are too large the inpainting result gets blurry, see the two left images of
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corrupted image, PSNR 14.83 ground truth, PSNR ∞

[5] PSNR 26.60 [2] PSNR 27.56

[20] PSNR 28.87 [18] PSNR 29.20

[22] PSNR 29.25 [1], PSNR 30.21

[14] PSNR 32.45 our approach, PSNR 32.68

Fig. 5: Comparison on the image “New Orleans” from [2]. While [14] and our
approach are close in terms of PSNR, the enlarged image detail (see green box
in the corrupted image) shows that our approach is better able to recover the
pole.
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input, PSNR 13.65 [24], PSNR 34.26 [26], PSNR 35.03 [20], PSNR 35.86 ours, PSNR 36.37

Fig. 6: Comparison on an image from [26].

corrupted image [20] PSNR 32.13 ours, PSNR 34.22

Fig. 7: Inpainting an image without knowledge of the exact mask of each image.
Only the font and font-size of the masks is known for training the neural net.

Fig. 8. While the sky is inpainted in an appropriate way (since it is smooth), the
bridge pylons and the grass on the left part of the image are inpainted in a blurry
way. Similarly, in the two right images of Fig. 8 we see that across the grass the
inpainted regions appear blurry. This is similar to the phenomenon also present
with diffusion-based inpainting methods. This is probably due to the fact that
the nonlinear filter learned by the MLP can only propagate a few pixels into the
mask, but fails to fill-in larger regions. It seems that the neural net used in this
approach is only able to learn to continue image information along isophotes.

4 Towards understanding the trained neural network

A common criticism of methods based on neural networks is that they work like
a black box, i.e. even though they are able to reach state-of-the-art performance
it remains unclear how the task is solved. To gain insight into how the trained
neural network achieves its performance, we study the feature generators for
MLPs trained with different distortion types and look how the input feature
depend on the shape of the masks.
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Fig. 8: Limitations of our approach: large holes (10×10 squares) result in blurry
output on textured regions, e.g. at the poles of the bridge. Similar limitations
can be seen on the horse image from [26] (line-width: 10 pixels).

4.1 Recognize and play back

Activation maximization [10] finds, for a given neuron in the last hidden layer,
the respective input that maximizes that neuron’s activation, while constraining
the input’s L2-norm. The neurons in the last hidden layer are of interest since
they are the feature generators, meaning the weights from these neurons to the
output layer comprise the features that are linearly superimposed to reconstruct
the image. We here analyze the neural net trained for Sec. 3.2. For Fig. 9, we
additionally fixed the inpainting mask to be the letter ’e’. The bottom row de-
picts typical 13x13 outputs of the feature generators, the top row the maximizing
39x39 input. For the Gabor-like feature in the left column, the MLP tries to de-
tect a continuation of the feature outside of the output size, which also motivates
the importance of larger input than output patches. In the second column, the
feature is not obstructed by the mask and is therefore just copied to the out-
put. The feature in the third column is impossible to reconstruct with the given
mask, the result of the activation maximization is only L2-constrained noise. In
the fourth column, the feature is partly visible, however, the input is similar to
the previous column, indicating that either the MLP is not yet optimal or that
the non-convex activation maximization converged to a local minimum.

Intuitively speaking, it seems that the neural network is able to detect certain
basic features which are then generated without missing pixels in the last layers.
So image features are detected even though pixels are missing, and played back
including the missing information.

4.2 Input features depend on the masks

In Sec. 2.4 we showed that the inpainting performance depends on the masks
used for training. To gain additional insight, we can also look at the weights for
the first layer, which are shown in Fig. 10. The first four images show weights of
a neural network trained on vertical bars, while the second four images on the
right were trained on diagonal bars. In general we see that the MLP learns mask
specific feature detectors. It would be interesting to better understand the other
features that appear; those currently have no obvious interpretation.
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Fig. 9: Input patterns (top row) maximizing the activation of eight of the MLP’s
feature generators (bottom row) for a given inpainting mask (shown in red),
the location of the output patch is marked with a green hairline. The MLP
reconstructs features in the output image by trying to find a corresponding
input pattern in regions not obstructed by the mask.

Fig. 10: Selection of weights for the first layer of two MLPs trained on images
corrupted with vertical bars (left 4 images) or with 45 diagonal bars (right 4
images). It can be seen that the filters learned by the MLPs are dependent on
the distortion type (shape of the mask) given to the MLP.

5 Conclusion

A purely learning-based inpainting approach has the advantage that it is easy
to incorporate further information, like the shape of the mask: simply include
that information into the input layer and let the training procedure figure out
how to make best use of it. Implementing this idea, we are able to show that our
inpainting approach based on deep neural networks is able to compete with the
currently best inpainting methods that are based on other principles.

Clearly, the mask specific training makes the solution more specific, with the
limitation that a trained network will not perform optimally if trained on the
wrong mask.

Surprisingly, it is also possible to train the neural network to blindly in-
paint an image. This is possible if we know the corruption process, e.g. font and
font-size, because we can then generate characteristic data to train the neural
network. This possibility goes beyond the capabilities of the usual approaches
to inpainting which commonly require the exact location of the missing pixels.
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