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Abstract

Single image super-resolution is the task of inferring
a high-resolution image from a single low-resolution in-
put. Traditionally, the performance of algorithms for this
task is measured using pixel-wise reconstruction measures
such as peak signal-to-noise ratio (PSNR) which have been
shown to correlate poorly with the human perception of im-
age quality. As a result, algorithms minimizing these met-
rics tend to produce over-smoothed images that lack high-
frequency textures and do not look natural despite yielding
high PSNR values.

We propose a novel application of automated texture syn-
thesis in combination with a perceptual loss focusing on
creating realistic textures rather than optimizing for a pixel-
accurate reproduction of ground truth images during train-
ing. By using feed-forward fully convolutional neural net-
works in an adversarial training setting, we achieve a sig-
nificant boost in image quality at high magnification ratios.
Extensive experiments on a number of datasets show the ef-
fectiveness of our approach, yielding state-of-the-art results
in both quantitative and qualitative benchmarks.

1. Introduction
Enhancing and recovering a high-resolution (HR) image

from a low-resolution (LR) counterpart is a theme both of
science fiction movies and of the scientific literature. In the
latter, it is known as single image super-resolution (SISR),
a topic that has enjoyed much attention and progress in re-
cent years. The problem is inherently ill-posed as no unique
solution exists: when downsampled, a large number of dif-
ferent HR images can give rise to the same LR image. For
high magnification ratios, this one-to-many mapping prob-
lem becomes worse, rendering SISR a highly intricate prob-
lem. Despite considerable progress in both reconstruction
accuracy and speed of SISR, current state-of-the-art meth-
ods are still far from image enhancers like the one operated

State of the art by PSNR Our result

Figure 1. Comparing the new state of the art by PSNR (ENet-E)
with the sharper, perceptually more plausible result produced by
ENet-PAT at 4x super-resolution on an image from ImageNet.

by Harrison Ford alias Rick Deckard in the iconic Blade
Runner movie from 1982. A crucial problem is the loss of
high-frequency information for large downsampling factors
rendering textured regions in super-resolved images blurry,
overly smooth, and unnatural in appearance (c.f . Fig. 1, left,
the new state of the art by PSNR, ENet-E).

The reason for this behavior is rooted in the choice of the
objective function that current state-of-the-art methods em-
ploy: most systems minimize the pixel-wise mean squared
error (MSE) between the HR ground truth image and its re-
construction from the LR observation, which has however
been shown to correlate poorly with human perception of
image quality [28, 54]. While easy to minimize, the optimal
MSE estimator returns the mean of many possible solutions
which makes SISR results look unnatural and implausible
(c.f . Fig. 2). This regression-to-the-mean problem in the
context of super-resolution is a well-known fact, however,
modeling the high-dimensional multi-modal distribution of
natural images remains a challenging problem.
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In this work we pursue a different strategy to improve
the perceptual quality of SISR results. Using a fully con-
volutional neural network architecture, we propose a novel
modification of recent texture synthesis networks in com-
bination with adversarial training and perceptual losses to
produce realistic textures at large magnification ratios. The
method works on all RGB channels simultaneously and
produces sharp results for natural images at a competitive
speed. Trained with suitable combinations of losses, we
reach state-of-the-art results both in terms of PSNR and us-
ing perceptual metrics.

2. Related work
The task of SISR has been studied for decades [23].

Early interpolation methods such as bicubic and Lanc-
zos [11] are based on sampling theory but often produce
blurry results with aliasing artifacts in natural images. A
large number of high-performing algorithms have since
been proposed [35], see also the recent surveys by Nasrol-
lahi and Moeslund [37] and Yang et al. [57].

In recent years, popular approaches include exemplar-
based models that either exploit recurrent patches of differ-
ent scales within a single image [13, 17, 22, 56] or learn
mappings between low and high resolution pairs of image
patches in external databases [3, 5, 14, 27, 51, 58, 63]. They
further include dictionary-based methods [33, 40, 52, 59,
61, 64] that learn a sparse representation of image patches
as a combination of dictionary atoms, as well as neural
network-based approaches [4, 8, 9, 24, 25, 26, 47, 48, 62]
which apply convolutional neural networks (CNNs) to the
task of SISR. Some approaches are specifically designed for
fast inference times [40, 42, 47]. Thus far, realistic textures
in the context of high-magnification SISR have only been
achieved by user-guided methods [19, 50].

More specifically, Dong et al. [8] apply shallow net-
works to the task of SISR by training a CNN via backpropa-
gration to learn a mapping from the bicubic interpolation
of the LR input to a high-resolution image. Later works
successfully apply deeper networks and the current state of
the art in SISR measured by PSNR is based on deep CNNs
[25, 26].

As these models are trained through MSE minimiza-
tion, the results tend to be blurry and lack high-frequency
textures due to the afore-mentioned regression-to-the-mean
problem. Alternative perceptual losses have been proposed
for CNNs [10, 24] where the idea is to shift the loss from
the image-space to a higher-level feature space of an ob-
ject recognition system like VGG [49], resulting in sharper
results despite lower PSNR values.

CNNs have also been found useful for the task of texture
synthesis [15] and style transfer [16, 24, 53], however these
methods are constrained to the setting of a single network
learning to produce only a single texture and have so far

not been applied to SISR. Adversarial networks [18] have
recently been shown to produce sharp results in a number of
image generation tasks [7, 39, 41, 66] but have so far only
been applied in the context of super-resolution in a highly
constrained setting for the task of face hallucination [62].

Concurrently and independently to our research, in an
unpublished work, Ledig et al. [29] developed an approach
that is similar to ours: inspired by Johnson et al. [24], they
train feed-forward CNNs using a perceptual loss in conjunc-
tion with an adversarial network. However, in contrast to
our work, they do not explicitly encourage local matching
of texture statistics which we found to be an effective means
to produce more realistic textures and to further reduce vi-
sually implausible artifacts without the need for additional
regularization techniques.

3. Single image super-resolution
A high resolution image IHR ∈ [0, 1]αw×αh×c is down-

sampled to a low resolution image

ILR = dα(IHR) ∈ [0, 1]w×h×c (1)

using some downsampling operator

dα : [0, 1]αw×αh×c → [0, 1]w×h×c (2)

for a fixed scaling factor α > 1, image width w, height h
and color channels c. The task of SISR is to provide an
approximate inverse f ≈ d−1 estimating IHR from ILR:

f(ILR) = Iest ≈ IHR. (3)

This problem is highly ill-posed as the downsampling oper-
ation d is non-injective and there exists a very large number
of possible images Iest for which d(Iest) = ILR holds.

Recent learning approaches aim to approximate f via
multi-layered neural networks by minimizing the Euclidean
loss ||Iest − IHR||22 between the current estimate and the
ground truth image. While these models reach excellent
results as measured by PSNR, the resulting images tend to
look blurry and lack high frequency textures present in the
original images. This is a direct effect of the high ambigu-
ity in SISR: since downsampling removes high frequency
information from the input image, no method can hope to
reproduce all fine details with pixel-wise accuracy. There-
fore, even state-of-the-art models learn to produce the mean
of all possible textures in those regions in order to minimize
the Euclidean loss for the output image.

To illustrate this effect, we designed a simple toy exam-
ple in Fig. 2, where all high frequency information is lost
by downsampling. The optimal solution with respect to the
Euclidean loss is simply the average of all possible images
while more advanced loss functions lead to more realistic,
albeit not pixel-perfect reproductions.
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Output size Layer
w × h× c Input ILR

w × h× 64
Conv, ReLU

Residual: Conv, ReLU, Conv
. . .

2w × 2h× 64
2x nearest neighbor upsampling

Conv, ReLU

4w × 4h× 64
2x nearest neighbor upsampling

Conv, ReLU
Conv, ReLU

4w × 4h× c
Conv

Residual image Ires

Output Iest = Ibicubic + Ires

Table 1. Our generative fully convolutional network architecture
for 4x super-resolution which only learns the residual between the
bicubic interpolation of the input and the ground truth. We use 3×3
convolution kernels, 10 residual blocks and RGB images (c = 3).

4. Method

4.1. Architecture

Our network architecture in Table 1 is inspired by Long
et al. [32] and Johnson et al. [24] since feed-forward fully
convolutional neural networks exhibit a number of useful
properties for the task of SISR. The exclusive use of convo-
lutional layers enables training of a single model for an in-
put image of arbitrary size at a given scaling factor α while
the feed-forward architecture results in an efficient model at
inference time since the LR image only needs to be passed
through the network once to get the result. The exclusive
use of 3×3 filters is inspired by the VGG architecture [49]
and allows for deeper models at a low number of parameters
in the network.

As the LR input is smaller than the output image, it needs
to be upsampled at some point to produce a high-resolution
image estimate. It may seem natural to simply feed the
bicubic interpolation of the LR image into the network [8].
However, this introduces redundancies to the input image
and leads to a higher computational cost. For convolutional
neural networks, Long et al. [32] use convolution transpose
layers1 which upsample the feature activations inside the
network. This circumvents the nuisance of having to feed
a large image with added redundancies into the CNN and
allows most computation to be done in the LR image space,
resulting in a smaller network and larger receptive fields of
the filters relative to the output image.

However, convolution transpose layers have been re-
ported to produce checkerboard artifacts in the output, ne-

1Long et al. [32] introduce them as deconvolution layers which may be
misleading since no actual deconvolution is performed. Other names for
convolution transpose layers include upconvolution, fractionally strided
convolution or simply backwards convolution.

(I) (II) (III) (IV)
IHR ILR Iest MSE Iest Adv.

Figure 2. Toy example to illustrate the effect of the Euclidean loss
and how maximizing the PSNR does not lead to realistic results.
(I) The HR images consist of randomly placed vertical and hori-
zontal bars of 1×2 pixels. (II) In ILR, the original orientations can-
not be distinguished anymore since both types of bars turn into a
single pixel. (III) A model trained to minimize the Euclidean loss
produces the mean of all possible solutions since this yields the
lowest MSE but the result looks clearly different from the original
images IHR. (IV) Training a model with an adversarial loss ideally
results in a sharp image that is impossible to distinguish from the
original HR images, although it does not match IHR exactly since
the model cannot know the orientation of each bar. Intriguingly,
this result has a lower PSNR than the blurry MSE sample.

cessitating an additional regularization term in the output
such as total variation [43]. Odena et al. [38] replace the
convolution transpose layers with nearest-neighbor upsam-
pling of the feature activations in the network followed by
a single convolution layer. In our network architecture,
this approach still produces checkerboard-artifacts for some
specific loss functions, however we found that it obviates
the need for an additional regularization term in our more
complex models. To further reduce artifacts, we add a con-
volution layer after all upsampling blocks in the HR image
space as this helps to avoid regular patterns in the output.

Training deep networks, we found residual blocks [20]
to be beneficial for faster convergence compared to stacked
convolution layers. A similarly motivated idea proposed by
Kim et al. [25] is to learn only the residual image by adding
the bicubic interpolation of the input to the model’s output,
so that it does not need to learn the identity function for ILR.
While the residual blocks that make up a main part of our
network already only add residual information, we found
that applying this idea helps stabilize training and reduce
color shifts in the output during training.

4.2. Training and loss functions

In this section, we introduce the loss terms used to train
our network. Various combinations of these losses and their
effects on the results are discussed in Sec. 5.1.

4.2.1 Pixel-wise loss in the image-space
As a baseline, we train our model with the pixel-wise MSE

LE = ||Iest − IHR||22, (4)

where
||I||22 =

1

whc

∑

w,h,c

(Iw,h,c)
2. (5)
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Bicubic ENet-E ENet-PAT Ground Truth

Figure 3. Our results on an image from ImageNet for 4x super-resolution. Despite reaching state-of-the-art results by PSNR, ENet-E
produces an unnatural and blurry image while ENet-PAT reproduces faithful high-frequency information, resulting in a photorealistic
image, at first glance almost indistinguishable from the ground truth image.

4.2.2 Perceptual loss in feature space

Dosovitskiy and Brox [10] as well as Johnson et al. [24]
propose a perceptual similarity measure. Rather than com-
puting distances in image space, both Iest and IHR are first
mapped into a feature space by a differentiable function φ
before computing their distance.

LP = ||φ(Iest)− φ(IHR)||22 (6)

This allows the model to generate outputs that may not
match the ground truth image with pixel-wise accuracy but
instead encourages the network to produce images that have
similar feature representations.

For the feature map φ, we use a pre-trained implementa-
tion of the popular VGG-19 network [1, 49]. It consists of
stacked convolutions coupled with pooling layers to gradu-
ally decrease the spatial dimension of the image and to ex-
tract higher-level features in higher layers. To capture both
low-level and high-level features, we use a combination of
the second and fifth pooling layers and compute the MSE
on their feature activations.

4.2.3 Texture matching loss
Gatys et al. [15, 16] demonstrate how convolutional neural
networks can be used to create high quality textures. Given
a target texture image, the output image is generated iter-
atively by matching statistics extracted from a pre-trained
network to the target texture. As statistics, correlations be-
tween the feature activations φ(I) ∈ Rn×m at a given VGG
layer with n features of length m are used:

LT = ||G(φ(Iest))−G(φ(IHR))||22, (7)

with Gram matrixG(F ) = FFT ∈ Rn×n. As it is based on
iterative optimization, this method is slow and only works
if a target texture is provided at test time. Subsequent works
train a feed-forward network that is able to synthesize a
global texture (e.g., a given painting style) onto other im-
ages [24, 53], however a single network again only produces

a single texture, and textures in all input images are replaced
by the single style that the network has been trained for.

We propose using the style transfer loss for SISR:
Instead of supplying our network with matching high-
resolution textures during inference, we compute the tex-
ture loss LT patch-wise during training to enforce locally
similar textures between Iest and IHR. The network there-
fore learns to produce images that have the same local tex-
tures as the high-resolution images during training. While
the task of generating arbitrary textures is more demanding
than single-texture synthesis, the LR image and high-level
contextual cues give our network more information to work
with, enabling it to generate varying high resolution tex-
tures. Empirically, we found a patch size of 16×16 pixels
to result in the best balance between faithful texture gener-
ation and the overall perceptual quality of the images. For
results with different patch sizes and further details on the
implementation, we refer the reader to the supplementary.

4.2.4 Adversarial training
Adversarial training [18] is a recent technique that has
proven to be a useful mechanism to produce realistically
looking images. In the original setting, a generative network
G is trained to learn a mapping from random vectors z to a
data space of images x that is determined by the selected
training dataset. Simultaneously, a discriminative network
D is trained to distinguish between real images x from the
dataset and generated samples G(z). This approach leads
to a minimax game in which the generator is trained to min-
imize

LA = − log(D(G(z))) (8)

while the discriminator minimizes

LD = − log(D(x))− log(1−D(G(z))). (9)

In the SISR setting,G is our generative network as shown in
Fig. 1, i.e., the input toG is now an LR image ILR instead of
a noise vector z and its desired output is a suitable realistic
high-resolution image Iest.
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Bicubic ENet-E ENet-P ENet-PA ENet-PAT IHR

Figure 4. Comparing the results of our model trained with different losses at 4x super-resolution on images from ImageNet. ENet-P’s result
looks slightly sharper than ENet-E’s, but it also produces unpleasing checkerboard artifacts. ENet-PA produces images that are significantly
sharper but contain unnatural textures while we found that ENet-PAT generates more realistic textures, resulting in photorealistic images
close to the original HR images. Results with further combinations of losses and different parameters are shown in the supplementary.

Following common practice [41], we apply leaky ReLU
activations [34] and use strided convolutions to gradually
decrease the spatial dimensions of the image in the discrim-
inative network as we found deeper architectures to result
in images of higher quality. Perhaps surprisingly, we found
dropout not to be effective at preventing the discrimina-
tor from overpowering the generator. Instead, the follow-
ing learning strategy yields better results and a more stable
training: we keep track of the average performance of the
discriminator on true and generated images within the pre-
vious training batch and only train the discriminator in the
subsequent step if its performance on either of those two
samples is below a threshold. The full architecture and fur-
ther details are specified in the supplement.

5. Evaluation
In Sec. 5.1, we investigate the performance of our ar-

chitecture trained with different combinations of the previ-
ously introduced loss functions. After identifying the best
performing models, Sec. 5.2 gives a comprehensive qualita-
tive and quantitative evaluation of our approach. Additional
experiments, comparisons and results at various scaling fac-
tors are given in the supplementary.

5.1. Effect of different losses
We compare the performance of our network trained

with the combinations of loss functions listed in Tab. 2. The
results are shown in Fig. 4 and Tab. 3 while more results on
Enet-EA, ENet-EAT and ENet-PAT trained with different
parameters are given in the supplementary.

Using the perceptual loss in ENet-P yields slightly
sharper results than ENet-E but it produces artifacts with-

Network Loss Description
ENet-E LE Baseline with MSE
ENet-P LP Perceptual loss
ENet-EA LE + LA ENet-E + adversarial
ENet-PA LP + LA ENet-P + adversarial
ENet-EAT LE + LA + LT ENet-EA + texture loss
ENet-PAT LP + LA + LT ENet-PA + texture loss

Table 2. The same network trained with varying loss functions.

out adding new details in textured areas. Even though the
perceptual loss is invariant under perceptually similar trans-
formations, the network is given no incentive to produce re-
alistic textures when trained with the perceptual loss alone.

ENet-PA produces greatly sharper images by adding
high frequency details to the output. However, the net-
work sometimes produces unpleasing high-frequency noise
to smooth regions and it seems to add high frequencies at
random edges resulting in halos and sharpening artifacts in
some cases. The texture loss helps ENet-PAT create locally
meaningful textures and greatly reduces the artifacts. For
some images, the results are almost indistinguishable from
the ground truth even at a high magnification ratio of 4.

Unsurprisingly, ENet-E yields the highest PSNR as it is
optimized specifically for that measure. Although ENet-
PAT produces perceptually more realistic images, the PSNR
is much lower as the reconstructions are not pixel-accurate.
As shown in the supplementary, SSIM and IFC [46] which
have been found to correlate better with human perception
[57] also do not capture the perceptual quality of the results,
so we provide alternative quantitative evaluations that agree
better with human perception in Sec. 5.2.2 and 5.2.3.
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Dataset Bicubic ENet-E ENet-P ENet-EA ENet-PA ENet-EAT ENet-PAT
Set5 28.42 31.74 28.28 28.15 27.20 29.26 28.56

Set14 26.00 28.42 25.64 25.94 24.93 26.53 25.77
BSD100 25.96 27.50 24.73 25.71 24.19 25.97 24.93

Urban100 23.14 25.66 23.75 23.56 22.51 24.16 23.54

Table 3. PSNR for our architecture trained with different combinations of losses at 4x super resolution. ENet-E yields the highest PSNR
values since it is trained towards minimizing the per-pixel distance to the ground truth. The models trained with the perceptual loss all yield
lower PSNRs as it allows for deviations in pixel intensities from the ground truth. It is those outliers that significantly lower the PSNR
scores. The texture loss increases the PSNR values by reducing the artifacts from the adversarial loss term. Best results shown in bold.

5.2. Comparison with other approaches
Figure 5 gives an overview of different approaches in-

cluding the current state of the art by PSNR [25, 26] on the
zebra image from Set14 which is particularly well-suited
for a visual comparison since it contains both smooth and
sharp edges, textured regions as well as repeating patterns.
Previous methods have gradually improved on edge recon-
struction, but even the state-of-the-art model DRCN suffers
from blur in regions where the LR image doesn’t provide
any high frequency information. While ENet-E reproduces
slightly sharper edges, the results exhibit the same charac-
teristics as previous approaches. The perceptual loss from
Johnson et al. [24] produces only a slightly sharper im-
age than ENet-E. On the other hand, ENet-PAT is the only
model that produces significantly sharper images with re-
alistic textures. Comparisons with further works including
Johnson et al. [24], Bruna et al. [4] and Romano et al. [42]
are shown in Fig. 6 and in the supplementary.

5.2.1 Quantitative results by PSNR
Table 4 summarizes the PSNR values of our approach in
comparison to other approaches including the previous state
of the art on various popular SISR benchmarks. ENet-E
achieves state-of-the-art results on all datasets.

5.2.2 Object recognition performance
It is known that super-resolution algorithms can be used as
a preprocessing step to improve the performance of other
image-related tasks such as face recognition [12]. We pro-
pose to use the performance of state-of-the-art object recog-
nition models as a metric to evaluate image reconstruction
algorithms, especially for models whose performance is not
captured well by PSNR, SSIM or IFC.

For evaluation, any pre-trained object recognition model
M and labeled set of images may be used. The image
restoration models to be evaluated are applied on a degraded
version of the dataset and the reconstructed images are fed
into M . The hypothesis is that the performance of powerful
object recognition models shows a meaningful correlation
with the human perception of image quality that may com-
plement pixel-based benchmarks such as PSNR.

Similar indirect metrics have been applied in previous
works, e.g., optical character recognition performance has
been utilized to compare the quality of text deblurring al-

gorithms [21, 55] and face-detection performance has been
used for the evaluation of super-resolution algorithms [30].
The performance of object recognition models has been
used for the indirect evaluation of image colorization [65],
where black and white images were colorized to improve
object detection rates. Namboodiri et al. [36] apply a met-
ric similar to ours to evaluate SISR algorithms and found it
to be a better metric than PSNR or SSIM for evaluating the
perceptual quality of super-resolved images.

For our comparison, we use ResNet-50 [6, 20] as this
class of models has achieved state-of-the-art performance
by winning the 2015 Large Scale Visual Recognition Chal-
lenge (ILSVRC) [44]. For the evaluation, we use the first
1000 images in the ILSVRC 2016 CLS-LOC validation
dataset2 where each image has exactly one out of 1000 la-
bels. The original images are scaled to 224×224 for the
baseline and downsampled to 56×56 for a scaling factor of
4. We report the mean top-1 and top-5 errors as well as
the mean confidence that ResNet reports on correct classi-
fications. The results are shown in Tab. 5. In our compar-
ison, some of the results roughly coincide with the PSNR
scores, with bicubic interpolation resulting in the worst per-
formance followed by DRCN [26] and PSyCo [40] which
yield visually comparable images and hence similar scores
as our ENet-E network. However, our models ENet-EA,
ENet-PA and ENet-PAT produce images of higher percep-
tual quality which is reflected in higher classification scores
despite their low PSNR scores. This indicates that the ob-
ject recognition benchmark matches human perception bet-
ter than PSNR does. The high scores of ENet-PAT are not
a result of overfitting due to being trained with VGG, since
even ENet-EA (which is not trained with VGG) gains higher
scores than e.g. ENet-E, which has the highest PSNR but
lower scores under this metric.

While we observe that the object recognition perfor-
mance roughly coincides with the human perception of im-
age quality in this benchmark for super-resolution, we leave
a more detailed analysis of this evaluation metric on other
image restoration problems to future work.

2We use the validation dataset since the annotations for the test dataset
are not released. However, even a potential bias of the ResNet-model
would not invalidate the results, since higher scores only imply that the
upscaled images are closer to the originals under the proposed metric.
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Bicubic Glasner [17] Kim [27] SCSR [60] SelfEx [22] SRCNN [8]

PSyCo [40] VDSR [25] DRCN [26] ENet-E ENet-PAT IHR

Figure 5. A comparison of previous methods with our results at 4x super-resolution on an image from Set14. Previous methods have
continuously improved upon the restoration of sharper edges yielding higher PSNR’s, a trend that ENet-E continues with slightly sharper
edges and finer details (e.g., area below the eye). With our texture-synthesizing approach, ENet-PAT is the only method that yields sharp
lines and reproduces textures, resulting in the most realistic looking image. Furthermore, ENet-PAT produces high-frequency patterns
missing completely in the LR image, e.g., lines on the zebra’s forehead or the grass texture, showing that the model is capable of detecting
and generating patterns that lead to a realistic image.

α = 4 Bicubic RFL A+ SelfEx SRCNN PSyCo ESPCN DRCN VDSR ENet-E
Dataset Baseline [45] [51] [22] [8] [40] [47] [26] [25] ours

Set5 28.42 30.14 30.28 30.31 30.48 30.62 30.90 31.53 31.35 31.74
Set14 26.00 27.24 27.32 27.40 27.49 27.57 27.73 28.02 28.01 28.42

BSD100 25.96 26.75 26.82 26.84 26.90 26.98 – 27.23 27.29 27.50
Urban100 23.14 24.19 24.32 24.79 24.52 24.62 – 25.14 25.18 25.66

Table 4. PSNR for different methods at 4x super-resolution. ENet-E achieves state-of-the-art results on all datasets. Best performance
shown in bold. Further results as well as SSIM and IFC scores on varying scaling factors are given in the supplementary.

5.2.3 Evaluation of perceptual quality
To further validate the perceptual quality of our results, we
conducted a user study on the ImageNet dataset from the
previous section. As a representative for models that min-
imize the Euclidean loss, we compare ENet-E as the new
state of the art in PSNR performance with the images gen-
erated by ENet-PAT which have a PSNR comparable to im-
ages upsampled with bicubic interpolation. The subjects
were shown the ground truth image along with the super-

resolution results of both ENet-E and ENet-PAT at 4x super-
resolution side-by-side, and were asked to select the image
that looks more similar to the ground truth. In 49 survey
responses for a total of 843 votes, subjects selected the im-
age produced by ENet-PAT 91.0% of the time, underlining
the perceptual quality of our results. For a screenshot of
the survey and an analysis on the images where the blurry
result by ENet-E was prefered, we refer the reader to the
supplementary material.
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Evaluation Bicubic DRCN [26] PSyCo [40] ENet-E ENet-EA ENet-PA ENet-PAT Baseline
Top-1 error 0.506 0.477 0.454 0.449 0.407 0.429 0.399 0.260
Top-5 error 0.266 0.242 0.224 0.214 0.185 0.199 0.171 0.072
Confidence 0.754 0.727 0.728 0.754 0.760 0.783 0.797 0.882

Table 5. ResNet object recognition performance and reported confidence on pictures from the ImageNet dataset downsampled to 56×56
before being upscaled by a factor of 4 using different algorithms. The baseline shows ResNet’s performance on the original 224×224 sized
images. Compared to PSNR, the scores correlate better with the human perception of image quality: ENet-E achieves only slightly higher
scores than DRCN or PSyCo since all these models minimize pixel-wise MSE. On the other hand, ENet-PAT achieves higher scores as it
produces sharper images and more realistic textures. The good results of ENet-EA which is trained without VGG indicate that the high
scores of ENet-PAT are not solely due to being trained with VGG, but likely a result of sharper images. Best results shown in bold.

Johnson et al. [24] ENet-PAT IHR

Figure 6. Comparing our model with a result from Johnson et
al. [24] on an image from BSD100 at 4x super-resolution. ENet-
PAT’s result looks more natural and does not contain checkerboard
artifacts despite the lack of an additional regularization term.

5.3. Training and inference speed
For training, we use all color images in MSCOCO [31]

that have at least 384 pixels on the short side resulting in
roughly 200k images. All images are cropped centrally to a
square and then downsampled to 256×256 to reduce noise
and JPEG artifacts. During training, we fix the size of the
input ILR to 32×32. As the scale of objects in the MSCOCO
dataset is too small when downsampled to such a small size,
we downsample the 256×256 images by α and then crop
these to patches of size 32×32. After training the model
for any given scaling factor α, the input to the fully convo-
lutional network at test time can be an image of arbitrary
dimensions w×h which is then upscaled to (αw)×(αh).

We trained all models for a maximum of 24 hours on
an Nvidia K40 GPU using TensorFlow [2], though conver-
gence rates depend on the applied combination of loss func-
tions. Although not optimized for efficiency, our network is
compact and quite fast at test time. The final trained model
is only 3.1MB in size and processes images in 9ms (Set5),
18ms (Set14), 12ms (BSD100) and 59ms (Urban100) on
average per image at 4x super-resolution.

6. Discussion, limitations and future work

We have proposed an architecture that is capable of pro-
ducing state-of-the-art results by both quantitative and qual-
itative measures by training with a Euclidean loss or a novel

Bicubic ENet-PAT IHR

Figure 7. Failure case on an image from BSD100. ENet-PAT has
learned to continue high-frequency patterns since they are often
lost in ILR at smaller scales. While that works out extremely well
in most cases (c.f . zebra’s forehead Fig. 5), the model fails in this
notable case since IHR is actually smooth in that region.

combination of adversarial training, perceptual losses and a
newly proposed texture transfer loss for super-resolution.
Once trained, the model interpolates full color images in a
single forward-pass at competitive speeds.

As SISR is a heavily ill-posed problem, some limitations
remain. While images produced by ENet-PAT look realis-
tic, they do not match the ground truth images on a pixel-
wise basis. Furthermore, the adversarial training sometimes
produces artifacts in the output which are greatly reduced
but not fully eliminated with the addition of the texture loss.

We noted an interesting failure on an image in the
BSD100 dataset that is shown in Fig. 7, where the model
continues a pattern visible in the LR image onto smooth ar-
eas. This is a result of the model learning to hallucinate
textures that occur frequently between pairs of LR and HR
images such as repeating stripes that fade in the LR image
as they increasingly shrink in size.

While the model is already competitive in terms of its
runtime, future work may decrease the depth of the net-
work and apply shrinking methods to speed up the model
to real-time performance on high-resolution data: adding a
term for temporal consistency could then enable the model
to be used for video super-resolution. We refer the reader
to the supplementary material for more results, further de-
tails and additional comparisons. A reference implemen-
tation of ENet-PAT can be found on the project website at
http://webdav.tue.mpg.de/pixel/enhancenet.
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tional neural networks for direct text deblurring. In BMVC,
2015.

[22] J.-B. Huang, A. Singh, and N. Ahuja. Single image super-
resolution from transformed self-exemplars. In CVPR, 2015.

[23] M. Irani and S. Peleg. Improving resolution by image reg-
istration. CVGIP: Graphical models and image processing,
53(3):231–239, 1991.

[24] J. Johnson, A. Alahi, and L. Fei-Fei. Perceptual losses for

real-time style transfer and super-resolution. In ECCV, 2016.
[25] J. Kim, J. Kwon Lee, and K. Mu Lee. Accurate image super-

resolution using very deep convolutional networks. In CVPR,
2016.

[26] J. Kim, J. Kwon Lee, and K. Mu Lee. Deeply-recursive
convolutional network for image super-resolution. In CVPR,
2016.

[27] K. I. Kim and Y. Kwon. Single-image super-resolution us-
ing sparse regression and natural image prior. IEEE TPAMI,
32(6):1127–1133, 2010.
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Abstract

In this supplemental, we present some further details on
our models and their training procedure, provide additional
insights about the influence of the different loss functions
to the super-resolution reconstruction, discuss applications
and limitations of our approach and show further results
and comparisons with other methods. The sections in the
supplementary are numbered to match the corresponding
sections in the main paper.

4 Additional details on the method
4.2.3 Patch size of texture matching loss

We compute the texture loss LT patch-wise to enforce lo-
cally similar textures between Iest and IHR. We found a
patch size of 16×16 pixels to result in the best balance be-
tween faithful texture generation and the overall perceptual
quality of the images. Figure 1 shows ENet-PAT when
trained using patches of size 4×4 pixels for the texture
matching loss (ENet-PAT-4) and when it is calculated on
larger patches of 128×128 pixels (ENet-PAT-128). Using
smaller patches leads to artifacts in textured regions while
calculating the texture matching loss on too large patches
during training leads to artifacts throughout the entire im-
age since the network is trained with texture statistics that
are averaged over regions of varying textures, leading to un-
pleasant results.

4.2.4 Architecture of the adversarial network
Table 1 shows the architecture of our discriminative adver-
sarial network used for the loss term LA. We follow com-
mon design patterns [13] and exclusively use convolutional
layers with filters of size 3×3 pixels with varying stride
lengths to reduce the spatial dimension of the input down to
a size of 4×4 pixels where we append two fully connected

Output size Layer
128× 128× 3 Input Iest or IHR

128× 128× 32 Conv, lReLU
64× 64× 32 Conv stride 2, lReLU
64× 64× 64 Conv, lReLU
32× 32× 64 Conv stride 2, lReLU
32× 32× 128 Conv, lReLU
16× 16× 128 Conv stride 2, lReLU
16× 16× 256 Conv, lReLU
8× 8× 256 Conv stride 2, lReLU
8× 8× 512 Conv, lReLU
4× 4× 512 Conv stride 2, lReLU

8192 Flatten
1024 Fc, lReLU
1 Fc, sigmoid
1 Estimated label

Table 1. The network architecture of our adversarial discrimina-
tive network at 4x super-resolution. As in the generative network,
we exclusively use 3×3 convolution kernels. The network design
draws inspiration from VGG [17] but uses leaky ReLU activa-
tions [11] and strided convolutions instead of pooling layers [13].

layers along with a sigmoid activation at the output to pro-
duce a classification label between 0 and 1.

5 Further evaluation of results
Our models only learn the residual image between the

bicubic upsampled input image and the high resolution out-
put which renders training more stable. Figure 3 displays
examples for residual images that our models estimate.
ENet-E has learned to significantly increase the sharpness
of the image and to remove aliasing effects in the bicubic
interpolation (as seen in the aliasing effects in the resid-
ual image that cancel out with the aliasing in the bicubic
interpolation). ENet-PAT additionally generates fine high-
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frequency textures in regions that should be textured while
leaving smooth areas such as the sky and the red front areas
of the house untouched.

5.1 Additional combinations of losses

In general, we found training models with the adversarial
and texture matching loss in conjunction with the Euclidean
loss (in place of the perceptual loss) to be significantly less
stable and the perceptual quality of the results oscillated
heavily during training, i.e., ENet-EA and ENet-EAT are
harder to train than ENet-PA and ENet-PAT. This is because
the adversarial and texture losses encourage the synthesis
of high frequency information in the results, increasing the
Euclidean distance to the ground truth images during train-
ing which leads to loss functions that counteract each other.
The perceptual loss on the other hand is more tolerant to
small-scale deviations due to pooling. The results of ENet-
EA and ENet-EAT are shown in Fig. 2. We note that the
texture matching loss in ENet-EAT leads to a more stable
training than ENet-EA and slightly better results, though
worse than ENet-PAT. This means that the texture matching
loss not only helps create more realistic textures, but it also
stabilizes the adversarial training to an extent.

5.2 Comparison with further methods

Figure 5 shows a comparison of our method with Bruna
et al. [2]. Our model does not suffer from jagged edges and
is much sharper.

Figure 6 shows a comparison with RAISR [14] at 2x
super-resolution. Since RAISR has been designed for speed
rather than state-of-the-art image quality, it reaches a lower
performance than previous methods [7, 8, 12] so ENet-E
yields visually sharper images even at this low scaling fac-
tor. ENet-PAT is the only model to reconstruct sharp de-
tails and it is visually much less distinguishable from the
ground truth. Despite not being optimized for speed, En-
hanceNet is even faster than RAISR at test-time: 9/18ms
(EnhanceNet) vs. 17/30ms (RAISR) on average per image
at 4x super-resolution on Set5/Set14, though EnhanceNet
runs on a GPU while RAISR has been benchmarked on a
6-core CPU.

To demonstrate the performance of our method, we com-
pare the result of ENet-PAT at 4x super-resolution with the
current state of the art models at 2x super-resolution in
Fig. 4. Although 4x super-resolution is a greatly more de-
manding task than 2x super-resolution, the results are com-
parable in quality. Small details that are lost completely in
the 4x downsampled image are more accurate in VDSR and
DRCN’s outputs, but our model produces a plausible image
with sharper textures at 4x super-resolution that even out-
performs the current state of the art at 2x super-resolution in
sharpness, e.g., the area below the eyes is sharper in ENet-
PAT’s result and looks very similar to the ground truth.

Model Loss Weight VGG layer
ENet-P LP 2 · 10−1 pool2

2 · 10−2 pool5
ENet-PA LP 2 · 10−1 pool2

2 · 10−2 pool5
LA 1 –

ENet-PAT LP 2 · 10−1 pool2
2 · 10−2 pool5

LA 2 –
LT 3 · 10−7 conv1.1

1 · 10−6 conv2.1

1 · 10−6 conv3.1

Table 2. Weights for the losses used to train our models.

5.2.1 Quantitative results by PSNR, SSIM and IFC

Tables 3, 4 and 5 show quantitative results measured by
PSNR, SSIM and IFC [16] for varying scaling factors.
None of these metrics is able to correctly capture the per-
ceptual quality of ENet-PAT’s results.

5.2.3 Screenshot of the survey

Figure 7 shows a screenshot of the survey that we used to
evaluate the perceptual quality of our results. The subjects
were shown the target image on the top and were asked to
click the image on the bottom that looks more similar to the
target image. Each subject was shown up to 30 images.

5.3 Implementation details and training

The model has been implemented in TensorFlow
r0.10 [1]. For all weights, we apply Xavier initialization [5].
For training, we use the Adam optimizer [9] with an initial
learning rate of 10−4. We found common convolutional
layers stacked with ReLU’s to yield comparable results,
but training converges faster with the residual architecture.
All models were trained only once and used for all results
throughout the paper and the supplementary, no fine-tuning
was done for any specific dataset or image. Nonetheless,
we believe that a choice of specialized training datasets for
specific types of images can greatly increase the perceptual
quality of the produced textures (c.f . Sec. 6).

For the perceptual loss LP and the texture loss LT , we
normalized feature activations to have a mean of one [4].
For the texture matching loss, we use a combination of the
first convolution in each of the first three groups of layers in
VGG, similar to Gatys et al. [4]. For the weights, we chose
the combination that produced the most realistically looking
results. The exact values of the weights for the different
losses are given in Table 2.
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Bicubic ENet-PAT-4 ENet-PAT-128 ENet-PAT-16 (default) IHR

Figure 1. Comparing different patch sizes for the texture matching loss during training for ENet-PAT on images from ImageNet at 4x
super-resolution. Computing the texture matching loss on small patches fails to capture textures properly (ENet-PAT-4) while matching
textures on the whole image leads to unpleasant results since different texture statistics are averaged (ENet-PAT-128).

Bicubic ENet-E ENet-EA ENet-EAT ENet-PAT IHR

Figure 2. Replacing the perceptual loss in ENet-PA and ENet-PAT with the Euclidean loss results in images with sharp but jagged edges
and overly smooth textures (4x super-resolution). Furthermore, these models are significantly harder to train.

6 Specialized training datasets

Figure 8 shows an example for an image where the ma-
jority of subjects in our survey preferred ENet-E’s result
over the image produced by ENet-PAT. In general, ENet-
PAT trained on MSCOCO struggles to reproduce realisti-
cally looking faces at high scaling factors and while the
overall image is significantly sharper than the result of
ENet-E, the human perception is highly sensitive to small

changes in the appearance of human faces which is why
many subjects preferred the blurry result of ENet-E in those
cases. To demonstrate that this is not a limitation of our
model, we train ENet-PAT with identical hyperparameters
on the CelebA dataset [10] (ENet-PAT-F) and compare the
results with ENet-PAT trained on MSCOCO as before. The
results are shown in Fig. 9. When trained on CelebA, ENet-
PAT-F has significantly better performance.
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ENet-E residual ENet-E result

ENet-PAT residual ENet-PAT result

Figure 3. A visualization of the residual image that the network produces at 4x super-resolution. While ENet-E significantly sharpens
edges and is able to remove aliasing from the bicubic interpolation, ENet-PAT produces additional textures yielding a sharp, realistic result.
Image taken from the SunHays80 dataset [18].
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2x downsampled input 2x downsampled input 4x downsampled input IHR

2x VDSR [7] 2x DRCN [8] 4x ENet-PAT IHR

Figure 4. Comparing the previous state of the art by PSNR value at 2x super-resolution (75% of all pixels missing) with our model at 4x
super-resolution (93.75% of all pixels missing). The top row shows the input to the models and the bottom row the results. Although our
model has significantly less information to work with, it produces a sharper image with realistic textures.

Scatter [2] Fine-tuned scatter [2] VGG [2] ENet-PAT IHR

Figure 5. Comparing our model with Bruna et al. [2] at 4x super-resolution. ENet-PAT produces images with more contrast and sharper
edges that are more faithful to the ground truth.
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RAISR [14] ENet-E ENet-PAT IHR

Figure 6. Comparing our model with Romano et al. [14] at 2x super-resolution on the butterfly image of Set5. Despite the low scaling
factor, image quality gradually increases between RAISR, ENet-E and ENet-PAT, the last of which is not only sharper but also recreates
small details better, e.g., the vertical white line in the middle of the picture is fully reconstructed only in ENet-PAT’s result.

α = 2 Bicubic RFL A+ SelfEx SRCNN PSyCo DRCN VDSR ENet-E Enet-PAT
Dataset Baseline [15] [19] [6] [3] [12] [8] [7] ours ours

Set5 33.66 36.54 30.14 36.49 36.66 36.88 37.63 37.53 37.32 33.89
Set14 30.24 32.26 27.24 32.22 32.42 32.55 33.04 33.03 33.25 30.45

BSD100 29.56 31.16 26.75 31.18 31.36 31.39 31.85 31.90 31.95 28.30
Urban100 26.88 29.11 24.19 29.54 29.50 29.64 30.75 30.76 31.21 29.00

Table 3. PSNR for different methods at 2x super-resolution. Best performance shown in bold.

α = 2 Bicubic RFL A+ SelfEx SRCNN PSyCo DRCN VDSR ENet-E Enet-PAT
Dataset Baseline [15] [19] [6] [3] [12] [8] [7] ours ours

Set5 0.9299 0.9537 0.9544 0.9537 0.9542 0.9559 0.9588 0.9587 0.9581 0.9276
Set14 0.8688 0.9040 0.9056 0.9034 0.9063 0.8984 0.9118 0.9124 0.9148 0.8617

BSD100 0.8431 0.8840 0.8863 0.8855 0.8879 0.8895 0.8942 0.8960 0.8981 0.8729
Urban100 0.8403 0.8706 0.8938 0.8947 0.8946 0.9000 0.9133 0.9140 0.9194 0.8303

α = 4 Bicubic RFL A+ SelfEx SRCNN PSyCo DRCN VDSR ENet-E Enet-PAT
Dataset Baseline [15] [19] [6] [3] [12] [8] [7] ours ours

Set5 0.8104 0.8548 0.8603 0.8619 0.8628 0.8678 0.8854 0.8838 0.8869 0.8082
Set14 0.7027 0.7451 0.7491 0.7518 0.7503 0.7525 0.8670 0.7674 0.7774 0.6784

BSD100 0.6675 0.7054 0.7087 0.7106 0.7101 0.7159 0.7233 0.7251 0.7326 0.6270
Urban100 0.6577 0.7096 0.7183 0.7374 0.7221 0.7317 0.7510 0.7524 0.7703 0.6936

Table 4. SSIM for different methods at 2x and 4x super-resolution. Similar to PSNR, ENet-PAT also yields low SSIM values despite the
perceptual quality of its results. Best performance shown in bold.

α = 4 Bicubic RFL A+ SelfEx SRCNN PSyCo DRCN VDSR ENet-E ENet-PAT
Dataset Baseline [15] [19] [6] [3] [12] [8] [7] ours ours

Set5 2.329 3.191 3.248 3.166 2.991 3.379 3.554 3.553 3.413 2.643
Set14 2.237 2.919 2.751 2.893 2.751 3.055 3.112 3.122 3.093 2.281

Urban100 2.361 3.110 3.208 3.314 2.963 3.351 3.461 3.459 3.508 2.635

Table 5. IFC for different methods at 4x super-resolution. Best performance shown in bold. The IFC scores roughly follow PSNR and do
not capture the perceptual quality of ENet-PAT’s results.
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Image Quality Assessment
30 images to go!

 
Target Image

Click the image that looks more similar to the target image above.

Figure 7. Example screenshot of our survey for perceptual image quality. Subjects were shown a target image above and were asked to
select the image on the bottom that looks more similar to the target image. In 49 survey responses for a total of 843 votes, subjects selected
the image produced by ENet-PAT 91.0%, underlining its higher perceptual quality compared to the state of the art by PSNR, ENet-E.
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Bicubic ENet-E ENet-PAT IHR

Figure 8. Failure case for ENet-PAT on an image from ImageNet at 4x super-resolution. While producing an overall sharper image than
ENet-E, ENet-PAT fails to reproduce a realistically looking face, leading to a perceptually implausible result.

Bicubic ENet-E ENet-PAT (MSCOCO) ENet-PAT-F IHR

Figure 9. Comparing our models on images of faces at 4x super resolution. ENet-PAT produces artifacts since its training dataset did not
contain many high-resolution images of faces. When trained specifically on a dataset of faces (ENet-PAT-F), the same network produces
realistic very realistic images, though the results look different from the actual ground truth images (similar to the results in Yu and
Porikli [20]). Note that we did not fine-tune the parameters of the losses for this specific task so better results may be possible.
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