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ABSTRACT
We present a new method for separating motion blurred fore-
ground objects from their background given a single image.
Previous techniques focused on estimating alpha mattes for
separating sharp, non-moving foreground objects from fairly
homogeneous background. In those cases the only pixels
which are ambiguous are those which exhibit fractional pixel
occupancy. In this paper, we address the problem of alpha
matte and foreground estimation of motion blurred objects.
We show, that explicit modeling of the object motion facili-
tates the estimation and improves the quality of the estimated
alpha mattes. In addition, we improve foreground extraction
of motion blurred objects with a new regularization term.
This task is particularly difficult in smeared out regions,
where the background shimmers through. Both synthetic and
real-world examples illustrate the merit of our approach.

Index Terms— alpha matting, motion blur, foreground
estimation.

1. INTRODUCTION

Motion blur is a common problem in photography as it causes
image blur that destroys details in the captured photo. While
camera shake (ego motion) is often a problem in hand-held
photography, a moving object (object motion) during image
capture leads to image blur even in case of a static camera.
This typically happens when the object’s speed is fast com-
pared to the exposure time, such that different projections of
the object hit the camera’s sensor plane during the time the
shutter is open. While ego motion affects the whole image,
object motion leads to image blur only in those image regions
that are affected by the object motion. Otherwise the photo is
sharp. Segmenting an image corrupted by object motion into
fore- and background is especially difficult in the smeared-
out boundary region. There, the blurry foreground is partially
transparent and the background shimmers through.

The common way to model a partially transparent bound-
ary between foreground and background is via alpha matting,
which models the observed image I as a combination of fore-
ground F̃ and background B̃:

I = α� F̃ + (1− α)� B̃ (1)
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where 0 ≤ α ≤ 1 is the alpha matte and � the pixel-wise
product.

Common alpha matting methods assume a static scene
and do not model possible blur of the foreground due to ob-
ject motion. However, in this paper we would like to take
advantage of that additional knowledge, so we explicitly in-
corporate the blur into the forward model [1, 2, 3]:

I = k ∗ (β � F ) + (1− k ∗ β)�B. (2)

k is the point spread function (PSF) of a spatially-invariant
blur of the foreground and ∗ denotes the convolution opera-
tion. Note that the results easily generalize to spatially-variant
blur.

How are α, F̃ and B̃ in (1) related to β, k, F andB in (2)?
For this we first consider the terms of the background image:

(1− k ∗ β)�B = (1− α)� B̃. (3)

which suggests to choose α = k ∗ β and B = B̃. For the
foreground expressions we get:

k ∗ (β � F ) = α� F̃ (4)

which is fulfilled for F̃ = α−1 � (k ∗ (β � F )) for all pixels
where α is not zero. At the other pixel locations F̃ can be
chosen arbitrarily since they are not relevant in Eq. (1). We
see that an image modelled by Eq. (2) can be approached as
a standard alpha matting problem (i.e. by Eq. (1)) if we con-
strain α to be k ∗ β. In Sec. 3 we show that this constraint
pushes the alpha matting algorithm of [4] towards the true so-
lution.

2. RELATED WORK AND CONTRIBUTIONS

Most alpha matting techniques [4, 5, 6, 7, 8, 9] are designed to
extract a sharp foreground, not a blurry one. For a benchmark
data-set for this setup see [10].

There are several papers which consider alpha matting
with motion-blurred foreground, often using additional hard-
ware or making use of several images: [11] uses alpha matting
as a preprocessing step to extract the blurry foreground from
a low-frequency background, [12, 13, 14] use a hybrid cam-
era for motion correction, [2] performs matting using multiple
cameras with different focal settings, [15] uses several differ-
ently polarized images and [16] a camera array.



(a) input (b) matte by [4] (c) our matte (d) ground truth (e) foreground by [4] (f) our foreground
Fig. 1. Improving the alpha matting approach of [4] for images containing motion blurred foreground objects in the case of a synthetic
example. The alpha matte of [4] shown in panel (b) suffers from strong artifacts at the boundaries, whereas our alpha matte (c) closely
resembles the true matte (d). For fair comparison we used the ground truth matte (d) for the foreground estimation: the foreground estimated
by [4] shows artifacts at the boundaries (e), whereas our foreground (f) is smooth in the boundary region. This figure is best viewed on screen.

All of the above mentioned approaches use several im-
ages or specialized hardware. There are some methods which
try to improve alpha matting for motion blurred objects based
on a single image. These use the motion blur indirectly to
improve the alpha matting: [3] adds a regularization term to
the energy function of [4] and [7]. This regularization term
incorporates motion information into the matting cost func-
tion and promotes solutions which are smooth in the motion
direction. [17] uses a guidance matte to improve the alpha
matting results of [4]. They start with the alpha matte esti-
mated by [4], which usually exhibits some artifacts. Those
artifacts are removed by deblurring the alpha matte with the
motion blur PSF, using a sparsity constraint and then blurring
it again. This blurry matte is then incorporated as a soft con-
straint in the closed form matting [4]. In [18], the authors
employ a smoothness and binary constraint to obtain an al-
pha matte which fits better to a motion blurred object than the
jagged alpha matte obtained by [4], which the authors use as
an initialization to their algorithm. [19] considers rotational
motion blur and builds on user input to constrain the solution.

Recovering the foreground given the alpha matte is of-
ten not discussed in the alpha matting literature. For motion
blurred foreground objects this is particularly difficult task,
since there is usually a large transparent boundary region as
can be seen e.g. in Fig. 5. [20] applies the unaltered approach
of [4] which recovers the foreground by adding regularization
terms which smooth the recovered foreground in the horizon-
tal and vertical directions in regions with sharp boundaries in
the alpha matte. [3] extends the regularization in [4] to eight
directions, emphasizing the direction of the motion.

While the approaches discussed above incorporate the in-
formation about the motion blur in an indirect way, we mod-
ify the image generation model and adapt the algorithm of [4]
to directly make use the motion blur model of Eq. (2). The
advantage of this approach is that it explicitly models and ex-
ploits the motion blur information (Sec. 3). Furthermore, we
improve the foreground recovery of [4] by giving hints about
the correct color of the motion blurred object in the smeared
out region (in Sec. 4).

Fig. 2. Severe ringing artifacts arise when the alpha matte β is
estimated without an L2 prior.

3. ESTIMATING THE MOTION BLURRED MATTE

The closed form solution by [4] is derived by assuming that
both F̃ and B̃ are approximately constant over a small win-
dow around each pixel. The resulting cost function,

C(α) = αTLα+ λ(α− bS)TDS(α− bS) (5)

is optimized wrt. the alpha matte α. It consists of two terms:
the first is based on a Laplacian matrix L which expresses
that close-by pixels with similar colors should be in the same
region (i.e. either both in the background or both in the fore-
ground). The second term includes the information from the
trimap which defines known fore- and background regions
given by user scribbles.

To demonstrate the short-comings of this approach for
motion blurred foreground, we generated a toy example
where we know the true k, β, B and F . Panel (b) of Fig. 1
shows that the unmodified approach in [4] leads to artifacts at
the boundaries.

Let us now assume that we know, in addition to a user
trimap, also the blur kernel k of the foreground, which could
be obtained by blind deconvolution methods like [21, 22, 23]
on a user-specified rectangle inside the foreground region. In-
stead of minimizing C(α) in α we minimize C(k ∗ β) in β.
Note that this does not make the problem more difficult, since
k ∗ β is linear in β, i.e. there exists a matrix K such that
Kβ = k ∗ β. Unfortunately, using this intuitive approach
without any further modifications leads to ringing artifacts in
β (see Fig. 2).

To reduce this ringing, we add a L2 smoothness prior on



β, i.e. we minimize

C(k ∗ β) + γ(‖Dxβ‖2 + ‖Dyβ‖2) (6)

in β with Dx and Dy being horizontal and vertical deriva-
tive operators (represented as matrices) and γ a regularization
constant. Setting the derivative of Eq. (6) wrt. β to zero we
obtain a linear system

[KT (L+λDS)K+γ(DT
xDx+D

T
y Dy)]β = λKTDSbS (7)

which can be solved using Matlab’s backslash operator (sim-
ilar to the implementation of [4] ). Finally, the estimated β is
blurred by the kernel k to obtain the alpha matte α = k ∗ β.

Fig. 1 shows the difference of an alpha matte using the
matting algorithm by [4] and our approach. The matte by [4]
is frayed on the boundaries whereas our matte is smooth as
expected for a motion blurred object. Note, that in all experi-
ments we set λ = 100 and γ = 150. We found that the exact
choice of those parameters is not crucial for the algorithm to
yield good results.

4. RECOVERING THE BLURRY FOREGROUND

Recovering the foreground, given the alpha matte is only an
easy task if the background color is rather homogeneous and
if the boundary regions with 0 < α < 1 are small. In images
where the background is textured and contains high frequency
content which partially shimmers through in the boundaries of
the motion blurred region, the correct color of the foreground
object is hard to estimate.

To compare different foreground recovery strategies, let’s
assume that the true alpha matte is given. [4] recovers fore-
ground and background by minimizing the function∑
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where c denotes the different color channels. The first term
follows from Eq. (1) and the second term is a constraint on
the x and y derivatives F c
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αix and αiy are the matte derivatives.
Applying this approach to the toy example using the

ground truth matte α∗, results in several artifacts at the
boundary (see Fig. 1(d)), which was also reported previously
(e.g. Sec. 5 in [20]). To reduce these artifacts, we propose to
add a soft constraint, which gives a hint on the color of the
foreground in the smeared out boundary regions.

We observed that in the smeared out boundary regions the
color of the foreground is often the same as the color of the
blurry object (see Fig. 3). This can be expressed by a regu-
larization term that we define with Iverson brackets [·], which
abbreviate indicator functions, i.e. [p] = 1 if proposition p is
true, and zero otherwise.

Given the matte α = k ∗ β, we first extract the regions of
the foreground, i.e. where the alpha matte is larger than some

(a) I (b) α = k ∗ β (c) [α > b]� I

(d) Fk = k ∗ ([α > b]� I) (e) [0 < α < b]� Fk

Fig. 3. Recovering the blurry foreground: (a) input image with
blurry foreground, (b) the corresponding (blurry) alpha matte, (c)
shows the part of the foreground where α > b with b = 0.7. Image
(c) blurred with the true blur kernel k is shown in (d). Panel (e)
shows the boundaries of image (d) for the region of alpha (0 < α <
b). It is evident that image (e) is a good soft constraint for recovering
the correct foreground color in the difficult transparent region, where
0 < α < b.

threshold, α > b. Choosing b = 0.7 leads to good results,
which we use for all images shown in this paper. The expres-
sion [α > b]�I represents the foreground region that contains
the colors which are blurred into the transparent boundary re-
gion of the foreground. By blurring this foreground region
with the PSF k (resulting in Fk = k∗([α > b]�I)), we extend
these colors into the transparent region, i.e. where 0 < α < b.
Only pixels in that region are regularized. This is expressed
by the following regularization term

R(α) = γ
∥∥[0 < α < b]� (F̃ − (k ∗ ([α > b]� I)))

∥∥2. (9)

Combining this with Levin’s approach (Eq. (8)) leads to im-
proved recovery of the foreground region as can be seen in
Fig. 1(e).

5. RESULTS

In the previous sections we have already shown in a number
of synthetic experiments that our proposed modifications to
[4] do improve the matting performance for motion-blurred
foreground objects. In this section, we show results on real-
world examples (taken by [3] and by ourselves).

Fig. 4 compares our approach with [4] that does not use
the PSF information. The alpha matte estimated by us is
smoother and shows fewer artifacts (panels (b) vs. (c)). This
also leads to a better boundary if we place the extracted fore-
ground onto a new background (panels (d) vs. (e)).

Fig. 5 compares our approach with the method of [3],
which is the only alpha matting method (as far as we know),
that tries to improve alpha matting for motion blurred fore-
ground objects. The close-ups (panels (b) vs. (c)) show
that the estimated alpha matte of [3] suffers from artifacts,



(a) input (b) alpha by [4] (c) our alpha (d) foreground by [4] (e) our foreground
Fig. 4. Comparison with [4]: (a) input image with motion blurred foreground, (b) and (c) estimated alpha mattes, (d) and (e) composed
example, where we pasted the estimated foreground of (a) onto a new background.

(a) images from [3] (b) alpha by [3] (c) our alpha (d) our foreground
Fig. 5. Comparison with [3]: (a) input images taken from [3], (b) and (c) show estimated alpha mattes, (d) composed example, where we
pasted our recovered foreground onto a new background. Note that the recovered foreground of [3] was not available.

whereas our alpha matte is smooth as we would expect for
an alpha matte of a moving object. We also manage to re-
cover a smoother foreground. Especially in regions where the
background shimmers through we obtain a reasonable color
estimation.

6. CONCLUSION

We presented a new approach for alpha matting and fore-
ground estimation of images containing motion blurred fore-
ground objects. For this we extended the alpha matting al-

gorithm of [4] by incorporating the motion blur in form of a
point spread function k into the image generation model such
that it can better estimate the alpha matte of a blurry fore-
ground. As a second contribution we presented a novel reg-
ularization term which facilitates foreground estimation and
leads to improved results, which we verified on both synthetic
and real-world examples.

In future work, we will extend our approach to spatially
varying motion blur (e.g. by using efficient filter flow frame-
work of [24]).
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